×

Finite-horizon parameterizing manifolds, and applications to suboptimal control of nonlinear parabolic PDEs. (English) Zbl 1311.49010

Summary: This article proposes a new approach for the design of low-dimensional suboptimal controllers to optimal control problems of nonlinear Partial Differential Equations (PDEs) of parabolic type. The approach fits into the long tradition of seeking for slaving relationships between the small scales and the large ones (to be controlled) but differ by the introduction of a new type of manifolds to do so, namely the finite-horizon Parameterizing Manifolds (PMs). Given a finite horizon \([0,T]\) and a low-mode truncation of the PDE, a PM provides an approximate parameterization of the high modes by the controlled low ones so that the unexplained high-mode energy is reduced – in a mean-square sense over \([0,T]\) – when this parameterization is applied.{ }Analytic formulas of such PMs are derived by application of the method of pullback approximation of the high-modes introduced in 2014 by Chekroun et al. These formulas allow for an effective derivation of reduced systems of Ordinary Differential Equations (ODEs), aimed to model the evolution of the low-mode truncation of the controlled state variable, where the high-mode part is approximated by the PM function applied to the low modes. The design of low-dimensional suboptimal controllers is then obtained by (indirect) techniques from finite-dimensional optimal control theory, applied to the PM-based reduced ODEs.{ } A-priori error estimates between the resulting PM-based low-dimensional suboptimal controller \(u_{R}^{\ast}\) and the optimal controller \(u^{\ast}\) are derived under a second-order sufficient optimality condition. These estimates demonstrate that the closeness of \(u_{R}^{\ast}\) to \(u^{\ast}\) is mainly conditioned on two factors: (i) the parameterization defect of a given PM, associated respectively with the suboptimal controller \(u_{R}^{\ast}\) and the optimal controller \(u^{\ast}\); and (ii) the energy kept in the high modes of the PDE solution either driven by \(u_{R}^{\ast}\) or \(u^{\ast}\) itself.{ } The practical performances of such PM-based suboptimal controllers are numerically assessed for optimal control problems associated with a Burgers-type equation; the locally as well as globally distributed cases being both considered. The numerical results show that a PM-based reduced system allows for the design of suboptimal controllers with good performances provided that the associated parameterization defects and energy kept in the high modes are small enough, in agreement with the rigorous results.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49K20 Optimality conditions for problems involving partial differential equations
35K55 Nonlinear parabolic equations

Software:

Ipopt; Bocop; SOCS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303-325 (1990) · Zbl 0708.76106
[2] Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. De Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1990) · Zbl 0708.34002
[3] Armaou, A., Christofides, P.D.: Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137(1-2), 49-61 (2000) · Zbl 0952.93060
[4] Armaou, A., Christofides, P.D.: Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chem. Eng. Sci. 57(24), 5083-5114 (2002)
[5] Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics, vol. 13. SIAM, Philadelphia (1995) · Zbl 0843.65054
[6] Atwell, J.A., King, B.B.: Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33, 1-19 (2001) · Zbl 0964.93032
[7] Baker, J., Armaou, A., Christofides, P.D.: Nonlinear control of incompressible fluid flow: application to Burgers’ equation and 2D channel flow. J. Math. Anal. Appl. 252, 230-255 (2000) · Zbl 1011.76018
[8] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Springer, Berlin (2008) · Zbl 1134.49022
[9] Beeler, S.C., Tran, H.T., Banks, H.T.: Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl. 107(1), 1-33 (2000) · Zbl 0971.49023
[10] Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Springer, Berlin (2007) · Zbl 1117.93002
[11] Berestycki, H., Kamin, S., Sivashinsky, G.: Metastability in a flame front evolution equation. Interfaces Free Bound. 3(4), 361-392 (2001) · Zbl 0991.35097
[12] Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J. Comput. Phys. 227(16), 7813-7840 (2008) · Zbl 1388.76073
[13] Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193-207 (1998) · Zbl 1158.49303
[14] Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. Advances in Design and Control, vol. 19. SIAM, Philadelphia (2010) · Zbl 1189.49001
[15] Bewley, T.R., Moin, P., Temam, R.: DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179-225 (2001) · Zbl 1036.76027
[16] Bewley, T.R., Temam, R., Ziane, M.: A general framework for robust control in fluid mechanics. Physica D 138(3), 360-392 (2000) · Zbl 0981.76026
[17] Bonnans, F.J., Martinon, P., Grélard, V.: Bocop—a collection of examples. Tech. Rep. RR-8053, INRIA (2012). http://hal.inria.fr/hal-00726992 · Zbl 1074.76015
[18] Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory. Mathématiques & Applications (Berlin), vol. 40. Springer, Berlin (2003) · Zbl 1022.93003
[19] Bonnard, B., Faubourg, L., Trélat, E.: Mécanique Céleste et Contrôle des Véhicules Spatiaux. Mathématiques & Applications (Berlin), vol. 51. Springer, Berlin (2006) · Zbl 1104.70001
[20] Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds. Mathématiques & Applications (Berlin), vol. 43. Springer, Berlin (2004) · Zbl 1137.49001
[21] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011) · Zbl 1220.46002
[22] Brunovský, P., Controlling the dynamics of scalar reaction diffusion equations by finite-dimensional controllers, No. 154, 22-27 (1991), Berlin · Zbl 0742.93030
[23] Bryson, A.E. Jr., Ho, Y.C.: Applied Optimal Control. Hemisphere Publishing Corp., Washington (1975)
[24] Cannarsa, P., Tessitore, M.E.: Infinite-dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type. SIAM J. Control Optim. 34(6), 1831-1847 (1996) · Zbl 0880.49029
[25] Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Applied Mathematical Sciences, vol. 182. Springer, New York (2013) · Zbl 1263.37002
[26] Chekroun, M.D., Liu, H., Wang, S.: Approximation of Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I. Springer Briefs in Mathematics. Springer, New York (2014). To appear · Zbl 1319.60002
[27] Chekroun, M.D., Liu, H., Wang, S.: Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II. Springer Briefs in Mathematics. Springer, New York (2014). To appear · Zbl 1331.37009
[28] Chekroun, M.D., Simonnet, E., Ghil, M.: Stochastic climate dynamics: random attractors and time-dependent invariant measures. Physica D 240(21), 1685-1700 (2011) · Zbl 1244.37046
[29] Chen, C.C., Chang, H.C.: Accelerated disturbance damping of an unknown distributed system by nonlinear feedback. AIChE J. 38(9), 1461-1476 (1992)
[30] Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509-543 (1993) · Zbl 0810.76012
[31] Christofides, P.D., Armaou, A., Lou, Y., Varshney, A.: Control and Optimization of Multiscale Process Systems. Springer, Berlin (2008) · Zbl 1157.93001
[32] Christofides, P.D., Daoutidis, P.: Nonlinear control of diffusion-convection-reaction processes. Comput. Chem. Eng. 20, S1071-S1076 (1996)
[33] Christofides, P.D., Daoutidis, P.: Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. J. Math. Anal. Appl. 216(2), 398-420 (1997) · Zbl 0890.93051
[34] Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Applied Mathematical Sciences, vol. 70. Springer, New York (1989) · Zbl 0683.58002
[35] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1-67 (1992) · Zbl 0755.35015
[36] Da Prato, G., Debussche, A.: Dynamic programming for the stochastic Burgers equation. Ann. Mat. Pura Appl. 178(1), 143-174 (2000) · Zbl 1016.49024
[37] Da Prato, G., Debussche, A.: Dynamic programming for the stochastic Navier-Stokes equations. Modél. Math. Anal. Numér. 34, 459-475 (2000) · Zbl 0953.76016
[38] Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces, vol. 293. Cambridge University Press, Cambridge (2002) · Zbl 1012.35001
[39] Dacorogna, B.: Direct Methods in the Calculus of Variations, vol. 78. Springer, Berlin (2007) · Zbl 0703.49001
[40] Dedè, L.: Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J. Sci. Comput. 32, 997-1019 (2010) · Zbl 1221.35030
[41] Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010) · Zbl 1194.35001
[42] Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. Mater. Res. Soc. Symp. Proc. 529, 39-46 (1998)
[43] Fattorini, H.O.: Boundary control systems. SIAM J. Control 6(3), 349-385 (1968) · Zbl 0164.10902
[44] Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and Its Applications, vol. 62. Cambridge University Press, Cambridge (1999) · Zbl 0931.49001
[45] Flandoli, F.: Riccati equation arising in a boundary control problem with distributed parameters. SIAM J. Control Optim. 22(1), 76-86 (1984) · Zbl 0533.49004
[46] Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO. Anal. Numér. 22(1), 93-118 (1988) · Zbl 0663.76054
[47] Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73(2), 309-353 (1988) · Zbl 0643.58004
[48] Franke, T.; Hoppe, R. H.W.; Linsenmann, C.; Wixforth, A., Projection based model reduction for optimal design of the time-dependent Stokes system, 75-98 (2012), Berlin · Zbl 1356.65156
[49] Fursikov, A.V.: Optimal Control of Distributed Systems: Theory and Applications. Translations of Mathematical Monographs, vol. 187. Am. Math. Soc., Providence (2000) · Zbl 04219230
[50] Grepl, M.A., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci., Ser. 1 Math. 349(15), 873-877 (2011) · Zbl 1232.49039
[51] Gunzburger, M.: Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65(3-4), 249-272 (2000) · Zbl 0996.76024
[52] Gunzburger, M.D.: Sensitivities, adjoints and flow optimization. Int. J. Numer. Methods Fluids 31(1), 53-78 (1999) · Zbl 0962.76030
[53] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981) · Zbl 0456.35001
[54] Hinze, M.; Kunisch, K., On suboptimal control strategies for the Navier-Stokes equations, No. 4, 181-198 (1998) · Zbl 0912.49019
[55] Hinze, M., Kunisch, K.: Three control methods for time-dependent fluid flow. Flow Turbul. Combust. 65, 273-298 (2000) · Zbl 0996.76025
[56] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE constraints, No. 23 (2009), Berlin · Zbl 1167.49001
[57] Hinze, M.; Volkwein, S., Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control, No. 45, 261-306 (2005), Berlin · Zbl 1079.65533
[58] Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press, Cambridge (2012) · Zbl 1251.76001
[59] Hsia, C.H., Wang, X.: On a Burgers’ type equation. Discrete Contin. Dyn. Syst., Ser. B 6(5), 1121-1139 (2006) · Zbl 1108.37052
[60] Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, vol. 15. SIAM, Philadelphia (2008) · Zbl 1156.49002
[61] Ito, K., Kunisch, K.: Reduced-order optimal control based on approximate inertial manifolds for nonlinear dynamical systems. SIAM J. Numer. Anal. 46(6), 2867-2891 (2008) · Zbl 1178.93033
[62] Ito, K., Ravindran, S.: Optimal control of thermally convected fluid flows. SIAM J. Sci. Comput. 19(6), 1847-1869 (1998) · Zbl 0918.49004
[63] Ito, K., Ravindran, S.S.: Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn. 15(2), 97-113 (2001) · Zbl 1036.76011
[64] Ito, K., Schroeter, J.D.: Reduced order feedback synthesis for viscous incompressible flows. Math. Comput. Model. 33, 173-192 (2001) · Zbl 0967.93013
[65] Keller, H.B.: Numerical Solution of Two Point Boundary Value Problems. Regional Conference Series in Applied Mathematics, vol. 24. SIAM, Philadelphia (1976)
[66] Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Softw. 27(3), 299-316 (2001) · Zbl 1070.65555
[67] Kirk, D.E.: Optimal Control Theory: An Introduction. Dover, New York (2012)
[68] Knowles, G.: An Introduction to Applied Optimal Control. Mathematics in Science and Engineering, vol. 159. Academic Press, New York (1981) · Zbl 0469.49001
[69] Kokotović, P., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Classics in Applied Mathematics, vol. 25. SIAM, Philadelphia (1999) · Zbl 0989.93001
[70] Kokotovic, P., O’Malley, R. Jr., Sannuti, P.: Singular perturbations and order reduction in control theory—an overview. Automatica 12(2), 123-132 (1976) · Zbl 0323.93020
[71] Kokotovic, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26(4), 501-550 (1984) · Zbl 0548.93001
[72] Kokotovic, P.V., Sannuti, P.: Singular perturbation method for reducing the model order in optimal control design. IEEE Trans. Autom. Control 13(4), 377-384 (1968)
[73] Krstic, M., Magnis, L., Vazquez, R.: Nonlinear control of the viscous Burgers equation: trajectory generation, tracking, and observer design. J. Dyn. Syst. Meas. Control 131(2), 021012 (2009), 8 pp.
[74] Kunisch, K., Volkwein, S.: Control of the Burgers’ equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102, 345-371 (1999) · Zbl 0949.93039
[75] Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492-515 (2002) · Zbl 1075.65118
[76] Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701-722 (2004) · Zbl 1058.35061
[77] Lebiedz, D., Rehberg, M.: A numerical slow manifold approach to model reduction for optimal control of multiple time scale ODE (2013). ArXiv preprint arXiv:1302.1759 · Zbl 0991.35097
[78] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) · Zbl 0203.09001
[79] Lions, J.L.: Some Aspects of the Optimal Control of Distributed Parameter Systems. SIAM, Philadelphia (1972) · Zbl 0275.49001
[80] Lions, J.L.: Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal. Lecture Notes in Mathematics, vol. 323. Springer, Berlin (1973) · Zbl 0268.49001
[81] Lions, J.L.: Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1-68 (1988) · Zbl 0644.49028
[82] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995) · Zbl 0816.35001
[83] Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33, 223-236 (2001) · Zbl 0966.93018
[84] Ma, T., Wang, S.: Phase Transition Dynamics. Springer, Berlin (2014) · Zbl 1285.82004
[85] Medjo, T.T., Tebou, L.T.: Adjoint-based iterative method for robust control problems in fluid mechanics. SIAM J. Numer. Anal. 42(1), 302-325 (2004) · Zbl 1074.76015
[86] Medjo, T.T., Temam, R., Ziane, M.: Optimal and robust control of fluid flows: some theoretical and computational aspects. Appl. Mech. Rev. 61(1), 010802 (2008), 23 pp. · Zbl 1145.76341
[87] Motte, I., Campion, G.: A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints. IEEE Trans. Robot. Autom. 16(6), 875-880 (2000)
[88] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Macmillan & Co., New York (1964). Translated by D.E. Brown. A Pergamon Press Book · Zbl 0117.31702
[89] Ravindran, S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Methods Fluids 34(5), 425-448 (2000) · Zbl 1005.76020
[90] Ravindran, S.S.: Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 23(6), 1924-1942 (2002) · Zbl 1026.76015
[91] Roberts, S.M., Shipman, J.S.: Two-Point Boundary Value Problems: Shooting Methods. Am. Elsevier, New York (1972) · Zbl 0239.65061
[92] Rosa, R.: Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee-Infante equation. J. Dyn. Differ. Equ. 15(1), 61-86 (2003) · Zbl 1081.93010
[93] Rosa, R.; Temam, R., Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, 382-391 (1997), Berlin · Zbl 0871.93027
[94] Sano, H., Kunimatsu, N.: An application of inertial manifold theory to boundary stabilization of semilinear diffusion systems. J. Math. Anal. Appl. 196(1), 18-42 (1995) · Zbl 0844.93065
[95] Schättler, H., Ledzewicz, U.: Geometric Optimal Control: Theory, Methods and Examples. Interdisciplinary Applied Mathematics, vol. 38. Springer, New York (2012) · Zbl 1237.49046
[96] Shvartsman, S.Y., Kevrekidis, I.G.: Nonlinear model reduction for control of distributed systems: a computer-assisted study. AIChE J. 44(7), 1579-1595 (1998)
[97] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Am. Math. Soc., Providence (1984) · Zbl 0568.35002
[98] Temam, R.: Inertial manifolds. Math. Intell. 12(4), 68-74 (1990) · Zbl 0711.58025
[99] Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154(3), 713-758 (2012) · Zbl 1257.49019
[100] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. Am. Math. Soc., Providence (2010) · Zbl 1195.49001
[101] Tröltzsch, F., Volkwein, S.: POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44, 83-115 (2009) · Zbl 1189.49050
[102] Volkwein, S.: Distributed control problems for the Burgers equation. Comput. Optim. Appl. 18(2), 115-140 (2001) · Zbl 0976.49001
[103] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25-57 (2006) · Zbl 1134.90542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.