×

zbMATH — the first resource for mathematics

Generation of a cokriging metamodel using a multiparametric strategy. (English) Zbl 1312.65102
Summary: In the course of designing structural assemblies, performing a full optimization is very expensive in terms of computation time. In order or reduce this cost, we propose a multilevel model optimization approach. This paper lays the foundations of this strategy by presenting a method for constructing an approximation of an objective function. This approach consists in coupling a multiparametric mechanical strategy based on the LATIN method with a gradient-based metamodel called a cokriging metamodel. The main difficulty is to build an accurate approximation while keeping the computation cost low. Following an introduction to multiparametric and cokriging strategies, the performance of kriging and cokriging models is studied using one- and two-dimensional analytical functions; then, the performance of metamodels built from mechanical responses provided by the multiparametric strategy is analyzed based on two mechanical test examples.

MSC:
65K10 Numerical optimization and variational techniques
62K99 Design of statistical experiments
62H11 Directional data; spatial statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Robinson GM, Keane AJ (1999) A case for multi-level optimisation in aeronautical design. Aeronaut J 103(1028): 481–485
[2] Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Multidiscip Optim 17(1): 1–13
[3] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1): 1–28
[4] Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2): 129–150 · Zbl 0985.68599
[5] Kravanja S, Silih S, Kravanja Z (2005) The multilevel minlp optimization approach to structural synthesis: the simultaneous topology, material, standard and rounded dimension optimization. Adv Eng Softw 36(9): 568–583 · Zbl 1072.74054
[6] Kravanja S, Soršak A, Kravanja Z (2003) Efficient multilevel minlp strategies for solving large combinatorial problems in engineering. Optim Eng 4(1): 97–151 · Zbl 1046.90049
[7] Liu B, Haftka RT, Watson LT (2004) Global-local structural optimization using response surfaces of local optimization margins. Struct Multidiscip Optim 27(5): 352–359
[8] Alexandrov NM, Lewis RM (2000) Analytical and computational aspects of collaborative optimization. NASA Technical Memorandum 210104
[9] Chen TY, Yang CM (2005) Multidisciplinary design optimization of mechanisms. Adv Eng Softw 36(5): 301–311 · Zbl 1116.70308
[10] Conceição António CA (2002) A multilevel genetic algorithm for optimization of geometrically nonlinear stiffened composite structures. Struct Multidiscip Optim 24(5): 372–386
[11] Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, New York · Zbl 0822.73001
[12] Le Riche R, Gaudin J (1998) Design of dimensionally stable composites by evolutionary optimization. Compos Struct 41(2): 97–111
[13] Theocaris PS, Stavroulakis GE (1998) Multilevel optimal design of composite structures including materials with negative poisson’s ratio. Struct Multidiscip Optim 15(1): 8–15
[14] Keane AJ, Petruzzelli N (2000) Aircraft wing design using ga-based multi-level strategies. In: AIAA paper 2000-4937. AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, USA, 06–08 Sep 2000. American Institute of Aeronautics and Astronautics
[15] Engels H, Becker W, Morris A (2004) Implementation of a multi-level optimisation methodology within the e-design of a blended wing body. Aerosp Sci Technol 8(2): 145–153
[16] Chattopadhyay A, McCarthy TR, Pagaldipti N (1995) Multilevel decomposition procedure for efficient design optimization of helicopter rotor blades. AIAA J 33(2): 223–230
[17] El-Sayed MEM, Hsiung CK (1991) Optimum structural design with parallel finite element analysis. Comput Struct 40(6): 1469–1474 · Zbl 0850.73198
[18] Umesha PK, Venuraju MT, Hartmann D, Leimbach KR (2005) Optimal design of truss structures using parallel computing. Struct Multidiscip Optim 29(4): 285–297
[19] Dunham B, Fridshal D, Fridshal R, North JH (1963) Design by natural selection. Synthese 15(1): 254–259
[20] El-Beltagy MA, Keane AJ (1999) A comparison of various optimization algorithms on a multilevel problem. Eng Appl Artif Intell 12(5): 639–654
[21] Elby D, Averill RC, Punch WF, Goodman ED (1998) Evaluation of injection island ga performance on flywheel design optimisation. In: Proceedings of Third International Conference of Adaptive Computing in Design and Manufacture, pp 121–136
[22] Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
[23] Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B (Methodological) 13(1): 1–45 · Zbl 0043.34402
[24] Simpson TW, Mauery TM, Korte JJ, Mistree F (1998) Multidisciplinary optimization branch. Comparison of response surface and kriging models for multidisciplinary design optimization. In: AIAA paper 98-4758. 7 th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp 98–4755
[25] Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall PTR, Upper Saddle River · Zbl 0828.68103
[26] McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 5(4): 115–133 · Zbl 0063.03860
[27] Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76: 1905–1915
[28] Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Current Science 78(7): 808–817
[29] Soulier B, Richard L, Hazet B, Braibant V (2003) Crashworthiness optimization using a surrogate approach by stochastic response surface. In: Gogu G, Coutellier D, Chedmail P, Ray P (eds) Recent advances in integrated design and manufacturing in mechanical engineering, pp 159–168, Mai
[30] Cressie N (1990) The origins of kriging. Mathematical Geology 22(3): 239–252 · Zbl 0964.86511
[31] Wackernagel H (1995) Multivariate geostatistics: an introduction with applications. Springer, Berlin · Zbl 0871.62105
[32] Chung HS, Alonso JJ (2002) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Citeseer
[33] Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum structural design: a review. Struct Multidiscip Optim 5(3): 129–144
[34] Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Multidiscip Optim 14(1): 1–23
[35] Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Springer, New York · Zbl 0912.73003
[36] Mandel J (1993) Balancing domain decomposition. Commun Num Methods Eng 9(3): 233–241 · Zbl 0796.65126
[37] Le Tallec P (1994) Domain decomposition methods in computational mechanics. Comput Mech Adv 1(2): 121–220 · Zbl 0802.73079
[38] Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Num Methods Eng 32(6): 1205–1227 · Zbl 0758.65075
[39] Blanzé C, Champaney L, Cognard JY, Ladevèeze P (1995) A modular approach to structure assembly computations: application to contact problems. Eng Comput 13(1): 15–32
[40] Ladevèze P (1985) Sur une famille d’algorithmes en mécanique des structures. Compte rendu de l’académie des Sciences 300(2): 41–44 · Zbl 0597.73089
[41] Champaney L, Cognard JY, Ladeveze P (1999) Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput Struct 73(1-5): 249–266 · Zbl 1049.74562
[42] Boucard PA, Ladevèze P (1999) Une application de la méthode latin au calcul multirésolution de structures non linéaires. Revue Européenne des Eléments Finis 8: 903–920 · Zbl 0980.74058
[43] Boucard PA (2001) Application of the latin method to the calculation of response surfaces. In: Proceeding of the First MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, USA, vol 1, pp 78–81, Juin
[44] Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Methods Appl Mech Eng 191(25-26): 2727–2758 · Zbl 1131.74322
[45] Boucard PA, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Num Methods Eng 57(9): 1259–1281 · Zbl 1062.74607
[46] Champaney L, Boucard PA, Guinard S (2008) Adaptive multi-analysis strategy for contact problems with friction. Comput Mech 42(2): 305–315 · Zbl 1304.74063
[47] Soulier B, Boucard PA (2009) A multiparametric strategy for the large-scale multilevel optimization of structural assemblies. In 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal
[48] Krige DG (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. Master’s thesis
[49] Matheron G (1962) Traité de géostatistique appliquée, Tome I. Memoires du Bureau de Recherches Geologiques et Minieres, vol 14
[50] Matheron G (1962) Traite de Geostatistique Appliquee, Tome II: Le Krigeage. Memoires du Bureau de Recherches Geologiques et Minieres, No 24
[51] Matheron G (1963) Principles of geostatistics. Econ Geol 58(8): 1246
[52] Sacks J, Schiller SB, Welch WJ (1989) Designs for computer experiments. Technometrics 31(1): 41–47
[53] Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4): 409–423 · Zbl 0955.62619
[54] Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. Adaptive Computation and Machine Learning, vol 1. MIT Press, Cambridge · Zbl 1177.68165
[55] Koehler JR, Owen AB (1996) Computer experiments. Handb Stat 13: 261–308 · Zbl 0919.62089
[56] Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3): 243–255 · Zbl 0785.62025
[57] Matérn B (1960) Spatial variation, Lecture notes in statistics, vol 36. Springer, Berlin
[58] Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York · Zbl 0924.62100
[59] Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1): 135 · Zbl 0542.62079
[60] Mardia KV, Watkins AJ (1989) On multimodality of the likelihood in the spatial linear model. Biometrika 76(2): 289 · Zbl 0666.62084
[61] Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis, University of Michigan
[62] Warnes JJ, Ripley BD (1987) Problems with likelihood estimation of covariance functions of spatial Gaussian processes. Biometrika 74(3): 640 · Zbl 0628.62087
[63] McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239–245 · Zbl 0415.62011
[64] Roulet V, Champaney L, Boucard P-A (2011) A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv Eng Softw 42(6): 347–358 · Zbl 1392.74068
[65] Leary SJ, Bhaskar A, Keane AJ (2004) Global approximation and optimization using adjoint computational fluid dynamics codes. AIAA J 42(3): 631–641
[66] Giannakoglou KC, Papadimitriou DI, Kampolis IC (2006) Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels. Comput Methods Appl Mech Eng 195(44–47): 6312–6329 · Zbl 1178.76310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.