×

Optimal designing of variables sampling plan for resubmitted lots. (English) Zbl 1315.62090

Summary: This article proposes a variables sampling plan that can be applied for sampling inspection of resubmitted lots when the quality characteristic of interest follows the normal distribution. Resubmission of lots for inspection is allowed in some situations where the original inspection results are suspected or when the supplier or producer is allowed to opt for resampling as per the provisions of the contract, etc. The advantages of this proposed variables sampling plan over the existing single sampling variables plan are discussed. Tables are also constructed for the selection of optimal parameters of known and unknown standard deviation variables resampling scheme for specified two points on the operating characteristic curve, namely, the acceptable quality level and the limiting quality level along with the producer and consumer’s risks. The optimization problem is formulated as a nonlinear programming where the objective function to be minimized is the average sample number and the constraints are related to lot acceptance probabilities at acceptable quality level and limiting quality level under the operating characteristic curve.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
90C30 Nonlinear programming
90C90 Applications of mathematical programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] ANSI/ASQC Standard A2-1987, Terms, Symbols, and Definitions for Acceptance Sampling (1987)
[2] DOI: 10.1080/10170669.2011.651165
[3] Aslam M., Research Journal of Applied Sciences, Engineering and Technology 4 (23) pp 5171– (2012)
[4] DOI: 10.1016/j.apm.2012.02.048 · Zbl 1351.62187
[5] DOI: 10.1108/EUM0000000001654
[6] DOI: 10.1081/SAC-200068424 · Zbl 1072.62118
[7] DOI: 10.2307/2981769 · Zbl 0425.62084
[8] DOI: 10.1007/BF02924690 · Zbl 0703.62102
[9] DOI: 10.1007/BF02669831 · Zbl 1106.62356
[10] Das N.G., Sankhya: The Indian Journal Statistics Series A 26 pp 169– (1964)
[11] Duncan A.J., Quality Control and Industrial Statistics (1986) · Zbl 0047.37901
[12] DOI: 10.1080/02664769823331 · Zbl 0934.62122
[13] DOI: 10.1080/03610919708813433 · Zbl 0900.62549
[14] Govindaraju K., Journal of Quality Technology 18 pp 234– (1986)
[15] Hamaker H.C., Journal of Quality Technology 11 pp 139– (1979)
[16] DOI: 10.1080/00401706.1995.10484339
[17] DOI: 10.1002/nav.3800330315 · Zbl 0605.62117
[18] DOI: 10.1214/aos/1176325491 · Zbl 0805.62093
[19] Lieberman G.J., Journal of the American Statistical Association 50 pp 72– (1955)
[20] DOI: 10.1002/nav.3800320107 · Zbl 0586.62176
[21] DOI: 10.1007/b98874 · Zbl 0930.65067
[22] DOI: 10.1080/00401706.1967.10490485
[23] DOI: 10.1080/00401706.1969.10490726
[24] DOI: 10.1016/j.omega.2004.08.001
[25] DOI: 10.1016/j.omega.2005.01.018
[26] DOI: 10.1080/03610929708832079 · Zbl 0954.62569
[27] Schilling E.G., Acceptance Sampling in Quality Control (1982) · Zbl 0508.62087
[28] Schneider H., Computational Statistics: Wolfgang Wetzel Zur Vollendung Seines 60 pp 281– (1981) · Zbl 0523.00011
[29] DOI: 10.1080/00401706.1966.10490352
[30] Sommers D.J., Journal of Quality Technology 13 pp 25– (1981)
[31] DOI: 10.1093/biomet/64.2.415 · Zbl 0371.62063
[32] Srivastava A.B. L., Journal of Science and Engineering Research 5 pp 145– (1961)
[33] DOI: 10.1080/03610919708813445 · Zbl 0925.62443
[34] DOI: 10.1080/00401706.1972.10488956
[35] DOI: 10.1016/j.ejor.2011.09.042 · Zbl 1244.90111
[36] Zimmer W.J., Industrial Quality Control 20 (1) pp 18– (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.