×

zbMATH — the first resource for mathematics

New scaling-squaring Taylor algorithms for computing the matrix exponential. (English) Zbl 1315.65046

MSC:
65F60 Numerical computation of matrix exponential and similar matrix functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Blackford and J. Dongarra, Installation Guide for LAPACK, Technical report, LAPACK Working Note 411, Department of Computer Science University of Tennessee, Knoxville, TN, 1999.
[2] S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), pp. 430–455. · Zbl 1005.65069
[3] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201–213. · Zbl 1049.90004
[4] Fortran Versions of Functions TSTD, TPS, OTPS, TPSBT, OTPSBT, and expm, http://personales.upv.es/\string jorsasma/FORTRAN.zip.
[5] G.H. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins Stud. Math. Sci., The Johns Hopkins University Press, Baltimore, MD, 1996.
[6] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002. · Zbl 1011.65010
[7] N.J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193. · Zbl 1081.65037
[8] N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008. · Zbl 1167.15001
[9] N.J. Higham and A.H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010), pp. 159–208. · Zbl 1242.65090
[10] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552–1574. · Zbl 0912.65058
[11] J. Ibán͂ez, V. Hernández, E. Arias, and P. Ruiz, Solving initial value problems for ordinary differential equations by two approaches: BDF and piecewise-linearized methods, Comput. Phys. Comm., 180 (2009), pp. 712–723. · Zbl 1198.65142
[12] A.-K. Kassam and L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26 (2005), pp. 1214–1233. · Zbl 1077.65105
[13] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later*, SIAM Rev., 45 (2003), pp. 3–49. · Zbl 1030.65029
[14] P.H. Petkov, N.D. Christov, and M.M. Konstantinov, Computational Methods for Linear Control Systems, Prentice Hall, Hertfordshire, UK, 1991. · Zbl 0790.93001
[15] M.S. Paterson and L.J. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66. · Zbl 0262.65033
[16] R.C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM J. Numer. Anal., 14 (1977), pp. 600–610. · Zbl 0363.65031
[17] D. Westreich, A practical method for computing the exponential of a matrix and its integral, Commun. Appl. Numer. Methods, 6 (1990), pp. 375–380. · Zbl 0704.65028
[18] J. Sastre, J. Ibán͂ez, E. Defez, and P. Ruiz, Efficient Scaling-Squaring Taylor Method for Computing the Matrix Exponential, http://personales.upv.es/\string jorsasma/076320.pdf (2009).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.