zbMATH — the first resource for mathematics

The confrontation between general relativity and experiment. (English) Zbl 1316.83019
Summary: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.
Update to the author’s paper [Zbl 1024.83003], see also update [Zbl 1316.83020]: Major revision, updated and expanded. Added new Section 2.3.3 on the Pioneer anomaly; split former Section 3 into new 3 and 4, and extended Section 3.3 on competing theories of gravity; added new Sections 5.3 and 5.4 on compact binary systems; added a new Section 8 on astrophysical and cosmological tests. The number of references increased from 299 to 454. Added two figures (8, 9) and updated Figures 1, 3, 5, and 7

83B05 Observational and experimental questions in relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C35 Gravitational waves
Full Text: DOI arXiv
[1] Adelberger, EG, New tests of einstein’s equivalence principle and newton’s inverse-square law, Class. Quantum Grav., 18, 2397-2405, (2001) · Zbl 0991.83520
[2] Adelberger, EG; Heckel, BR; Hoedl, S; Hoyle, CD; Kapner, DJ; Upadhye, A, Particle-physics implications of a recent test of the gravitational inverse-square law, Phys. Rev. Lett., 98, 131104, (2007)
[3] Adelberger, EG; Heckel, BR; Nelson, AE, Tests of the gravitational inverse-square law, Annu. Rev. Nucl. Part. Sci., 53, 77-121, (2003)
[4] Adelberger, EG; Heckel, BR; Stubbs, CW; Rogers, WF, Searches for new macroscopic forces, Annu. Rev. Nucl. Sci., 41, 269-320, (1991)
[5] Alexander, S; Yunes, N, Chern-Simons modified general relativity, Phys. Rep., 480, 1-55, (2009)
[6] Ali-Haïmoud, Y; Chen, Y, Slowly rotating stars and black holes in dynamical Chern-Simons gravity, Phys. Rev. D, 84, 124033, (2011)
[7] Alsing, J; Berti, E; Will, CM; Zaglauer, H, Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity, Phys. Rev. D, 85, 064041, (2012)
[8] Alväger, T; Farley, FJM; Kjellman, J; Wallin, I, Test of the second postulate of special relativity in the gev region, Phys. Lett., 12, 260-262, (1977)
[9] Alvarez, C; Mann, RB, The equivalence principle and anomalous magnetic moment experiments, Phys. Rev. D, 54, 7097-7107, (1996)
[10] Alvarez, C; Mann, RB, Testing the equivalence principle by Lamb shift energies, Phys. Rev. D, 54, 5954-5974, (1996)
[11] Alvarez, C; Mann, RB, The equivalence principle and \(g\) − 2 experiments, Phys. Lett. B, 409, 83-87, (1997)
[12] Alvarez, C; Mann, RB, The equivalence principle in the non-baryonic regime, Phys. Rev. D, 55, 1732-1740, (1997)
[13] Alvarez, C; Mann, RB, Testing the equivalence principle using atomic vacuum energy shifts, Mod. Phys. Lett. A, 11, 1757-1763, (1997)
[14] Alves, MES; Tinto, M, Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity, Phys. Rev. D, 83, 123529, (2011)
[15] Amin, MA; Wagoner, RV; Blandford, RD, A subhorizon framework for probing the relationship between the cosmological matter distribution and metric perturbations, Mon. Not. R. Astron. Soc., 390, 131-142, (2008)
[16] Anderson, JD; Laing, PA; Lau, EL; Liu, AS; Nieto, MM; Turyshev, SG, Indication, from pioneer 10/11, galileo, and ulysses data, of an apparent anomalous, weak, long-range acceleration, Phys. Rev. Lett., 81, 2858-2861, (1998)
[17] Antia, HM; Chitre, SM; Gough, DO, Temporal variations in the sun’s rotational kinetic energy, Astron. Astrophys., 477, 657-663, (2008) · Zbl 1137.85302
[18] Antoniadis, I; Arkani-Hamed, N; Dimopoulos, S; Dvali, G, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B, 436, 257-263, (1998)
[19] Antoniadis, J; etal., A massive pulsar in a compact relativistic binary, Science, 340, 448, (2013)
[20] Antonini, P; Okhapkin, M; Göklü, E; Schiller, S, Test of constancy of speed of light with rotating cryogenic optical resonators, Phys. Rev. A, 71, 050101, (2005)
[21] Arkani-Hamed, N; Dimopoulos, S; Dvali, GR, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 429, 263-272, (1998) · Zbl 1355.81103
[22] Arun, KG; Iyer, BR; Qusailah, MSS; Sathyaprakash, BS, Probing the nonlinear structure of general relativity with black hole binaries, Phys. Rev. D, 74, 024006, (2006)
[23] Arun, KG; Will, CM, Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates, Class. Quantum Grav., 26, 155002, (2009) · Zbl 1172.83016
[24] Asada, H, The light cone effect on the Shapiro time delay, Astrophys. J. Lett., 574, l69-l70, (2002)
[25] Ashby, N; Dadhich, N (ed.); Narlikar, JV (ed.), Relativistic effects in the global positioning system, Proceedings of the 15th International Conference on General Relativity and Gravitation (GR-15), IUCAA, Pune, India, December 16-21, 1997, Pune, India
[26] Ashby, N., “Relativity in the Global Positioning System”, Living Rev. Relativity, 6, lrr-2003-1 (2003). [DOI]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2003-1. (Cited on page 17.) · Zbl 1023.83005
[27] Ashby, N; Bender, PL; Wahr, JM, Future gravitational physics tests from ranging to the bepicolombo Mercury planetary orbiter, Phys. Rev. D, 75, 022001, (2007)
[28] “ATNF Pulsar Catalogue”, web interface to database, Australia Telescope National Facility. URL (accessed 28 March 2014): http://www.atnf.csiro.au/research/pulsar/psrcat/. (Cited on page 68.) · Zbl 0946.81074
[29] Baeßler, S; Heckel, BR; Adelberger, EG; Gundlach, JH; Schmidt, U; Swanson, HE, Improved test of the equivalence principle for gravitational self-energy, Phys. Rev. Lett., 83, 3585-3588, (1999)
[30] Baker, T; Ferreira, PG; Skordis, C, The parameterized post-Friedmann framework for theories of modified gravity: concepts, formalism, and examples, Phys. Rev. D, 87, 024015, (2013)
[31] Bambi, C; Giannotti, M; Villante, FL, Response of primordial abundances to a general modification of \(G\)_{N} and/or of the early universe expansion rate, Phys. Rev. D, 71, 123524, (2005)
[32] Barausse, E; Palenzuela, C; Ponce, M; Lehner, L, Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, 87, 081506, (2013)
[33] Bartlett, DF; Buren, D, Equivalence of active and passive gravitational mass using the Moon, Phys. Rev. Lett., 57, 21-24, (1986)
[34] Bauch, A; Weyers, S, New experimental limit on the validity of local position invariance, Phys. Rev. D, 65, 081101(r), (2002)
[35] Baumgarte, T. W. and Shapiro, S. L., Numerical Relativity: Solving Einstein’s Equations on the Computer, (Cambridge University Press, Cambridge; New York, 2010). [ADS], [Google Books]. (Cited on page 55.) · Zbl 1198.83001
[36] Bekenstein, JD, Relativistic gravitation theory for the modified Newtonian dynamics paradigm, Phys. Rev. D, 70, 083509, (2004)
[37] Bell, JF; Damour, T, A new test of conservation laws and Lorentz invariance in relativistic gravity, Class. Quantum Grav., 13, 3121-3127, (1996) · Zbl 0875.53031
[38] Benkhoff, J; etal., Bepicolombo — comprehensive exploration of Mercury: mission overview and science goals, Planet. Space Sci., 58, 2-20, (2010)
[39] Bennett, CL; etal., Nine-year wilkinson microwave anisotropy probe (WMAP) observations: final maps and results, Astrophys. J. Suppl. Ser., 208, 20, (2013)
[40] Beringer, J; Particle Data Group; etal., Review of particle physics, Phys. Rev. D, 86, 010001, (2012)
[41] Berti, E; Buonanno, A; Will, CM, Estimating spinning binary parameters and testing alternative theories of gravity with LISA, Phys. Rev. D, 71, 084025, (2005)
[42] Berti, E; Buonanno, A; Will, CM, Testing general relativity and probing the merger history of massive black holes with LISA, Class. Quantum Grav., 22, s943-s954, (2005) · Zbl 1081.83529
[43] Berti, E; Cardoso, V; Starinets, AO, Quasinormal modes of black holes and black branes, Class. Quantum Grav., 26, 163001, (2009) · Zbl 1173.83001
[44] Bertotti, B; Iess, L; Tortora, P, A test of general relativity using radio links with the Cassini spacecraft, Nature, 425, 374-376, (2003)
[45] Bezerra, VB; Klimchitskaya, GL; Mostepanenko, VM; Romero, C, Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations, Phys. Rev. D, 83, 075004, (2011)
[46] Bhat, NDR; Bailes, M; Verbiest, JPW, Gravitational-radiation losses from the pulsar white-dwarf binary PSR J1141 6545, Phys. Rev. D, 77, 124017, (2008)
[47] Bi, X-J; Cao, Z; Li, Y; Yuan, Q, Testing Lorentz invariance with the ultrahigh energy cosmic ray spectrum, Phys. Rev. D, 79, 083015, (2009)
[48] Biller, SD; etal., Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies, Phys. Rev. Lett., 83, 2108-2111, (1999)
[49] Bize, S; etal., Testing the stability of fundamental constants with \^{}{199}hg\^{}{+} single-ion optical clock, Phys. Rev. Lett., 90, 150802, (2003)
[50] Blanchet, L, Second-post-Newtonian generation of gravitational radiation, Phys. Rev. D, 51, 2559-2583, (1995)
[51] Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 17, lrr-2014-2 (2014). [DOI], [ADS], [arXiv:1310.1528 [gr-qc]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2014-2. (Cited on pages 60, 61, 62, and 84.) · Zbl 1316.83003
[52] Blanchet, L; Damour, T, Radiative gravitational fields in general relativity I. general structure of the field outside the source, Philos. Trans. R. Soc. London, Ser. A, 320, 379-430, (1986) · Zbl 0604.35073
[53] Blanchet, L; Damour, T, Tail-transported temporal correlations in the dynamics of a gravitating system, Phys. Rev. D, 37, 1410-1435, (1988)
[54] Blanchet, L; Damour, T, Post-Newtonian generation of gravitational waves, Ann. Inst. Henri Poincare A, 50, 377-408, (1989) · Zbl 0684.53059
[55] Blanchet, L; Damour, T, Hereditary effects in gravitational radiation, Phys. Rev. D, 46, 4304-4319, (1992)
[56] Blanchet, L; Damour, T; Iyer, BR; Will, CM; Wiseman, AG, Gravitational-radiation damping of compact binary systems to second post-Newtonian order, Phys. Rev. Lett., 74, 3515-3518, (1995)
[57] Blanchet, L; Novak, J, External field effect of modified Newtonian dynamics in the solar system, Mon. Not. R. Astron. Soc., 412, 2530-2542, (2011)
[58] Blanchet, L. and Novak, J., “Testing MOND in the Solar System”, arXiv, e-print, (2011). [ADS], [arXiv:1105.5815 [astro-ph.CO]]. (Cited on page 40.) · Zbl 1065.83506
[59] Blanchet, L; Sathyaprakash, BS, Signal analysis of gravitational wave tails, Class. Quantum Grav., 11, 2807-2831, (1994)
[60] Blanchet, L; Sathyaprakash, BS, Detecting the tail effect in gravitational wave experiments, Phys. Rev. Lett., 74, 1067-1070, (1995)
[61] Blas, D; Pujolàs, O; Sibiryakov, S, Consistent extension of Hořava gravity, Phys. Rev. Lett., 104, 181302, (2010)
[62] Blas, D; Pujolàs, O; Sibiryakov, S, Models of non-relativistic quantum gravity: the good, the bad and the healthy, J. High Energy Phys., 4, 18, (2011) · Zbl 1250.83031
[63] Blatt, S; etal., New limits on coupling of fundamental constants to gravity using sr87 optical lattice clocks, Phys. Rev. Lett., 100, 140801, (2008)
[64] Bolton, AS; Rappaport, S; Burles, S, Constraint on the post-Newtonian parameter \(γ\) on galactic size scales, Phys. Rev. D, 74, 061501, (2006)
[65] Braginsky, VB; Panov, VI, Verification of the equivalence of inertial and gravitational mass, Sov. Phys. JETP, 34, 463-466, (1972)
[66] Braxmaier, C; etal., Astrodynamical space test of relativity using optical devices I (ASTROD I) — a class-M fundamental physics mission proposal for cosmic vision 2015-2025: 2010 update, Exp. Astron., 34, 181-201, (2012)
[67] Brecher, K, Is the speed of light independent of the velocity of the source?, Phys. Rev. Lett., 39, 1051-1054, (1977)
[68] Breton, RP; etal., Relativistic spin precession in the double pulsar, Science, 321, 104, (2008)
[69] Brillet, A; Hall, JL, Improved laser test of the isotropy of space, Phys. Rev. Lett., 42, 549-552, (1979)
[70] Brunetti, M; Coccia, E; Fafone, V; Fucito, F, Gravitational-wave radiation from compact binary systems in the Jordan-Brans-Dicke theory, Phys. Rev. D, 59, 044027, (1999)
[71] Burgay, M, The double pulsar system in its 8th anniversary, (2012), Australia
[72] Burgay, M; etal., An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature, 426, 531-533, (2003)
[73] Carlip, S, Model-dependence of Shapiro time delay and the ‘speed of gravity/speed of light’ controversy, Class. Quantum Grav., 21, 3803-3812, (2004) · Zbl 1087.83054
[74] Chamberlin, SJ; Siemens, X, Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays, Phys. Rev. D, 85, 082001, (2012)
[75] Champeney, DC; Isaak, GR; Khan, AM, An ‘aether drift’ experiment based on the mossbauer effect, Phys. Lett., 7, 241-243, (1963)
[76] Chand, H; Petitjean, P; Srianand, R; Aracil, B, Probing the time-variation of the fine-structure constant: results based on si IV doublets from a UVES sample, Astron. Astrophys., 430, 47-58, (2005)
[77] Chandrasekhar, S, The post-Newtonian equations of hydrodynamics in general relativity, Astrophys. J., 142, 1488-1540, (1965)
[78] Chatziioannou, K; Yunes, N; Cornish, N, Model-independent test of general relativity: an extended post-Einsteinian framework with complete polarization content, Phys. Rev. D, 86, 022004, (2012)
[79] Chiaverini, J; Smullin, SJ; Geraci, AA; Weld, DM; Kapitulnik, A, New experimental constraints on non-Newtonian forces below 100 \(µ\)m, Phys. Rev. Lett., 90, 151101, (2003)
[80] Chou, CW; Hume, DB; Rosenband, T; Wineland, DJ, Optical clocks and relativity, Science, 329, 1630-1633, (2010)
[81] Chupp, TE; Hoare, RJ; Loveman, RA; Oteiza, ER; Richardson, JM; Wagshul, ME; Thompson, AK, Results of a new test of local Lorentz invariance: A search for mass anisotropy in \^{}{21}ne, Phys. Rev. Lett., 63, 1541-1545, (1989)
[82] Ciufolini, I, The 1995-99 measurements of the lense-Thirring effect using laser-ranged satellites, Class. Quantum Grav., 17, 2369-2380, (2000) · Zbl 0967.83502
[83] Ciufolini, I; Chieppa, F; Lucchesi, D; Vespe, F, Test of lense-Thirring orbital shift due to spin, Class. Quantum Grav., 14, 2701-2726, (1997) · Zbl 0900.53024
[84] Ciufolini, IM; Monge, B; Paolozzi, A; Koenig, R; Sindoni, G; Michalak, G; Pavlis, EC, Monte Carlo simulations of the LARES space experiment to test general relativity and fundamental physics, Class. Quantum Grav., 30, 235009, (2013)
[85] Ciufolini, I; Paolozzi, A; Pavlis, EC; Ries, J; Koenig, R; Matzner, R; Sindoni, G; Neumeyer, H, Testing gravitational physics with satellite laser ranging, Eur. Phys. J. Plus, 126, 72, (2011)
[86] Ciufolini, I; Pavlis, EC, A confirmation of the general relativistic prediction of the lense-Thirring effect, Nature, 431, 958-960, (2004)
[87] Ciufolini, I; Pavlis, EC; Chieppa, F; Fernandes-Vieira, E; Pérez-Mercader, J, Test of general relativity and measurement of the lense-Thirring effect with two Earth satellites, Science, 279, 2100-2103, (1998)
[88] Ciufolini, I; Pavlis, EC; Peron, R, Determination of frame-dragging using Earth gravity models from CHAMP and GRACE, New Astron., 11, 527-550, (2006)
[89] Clifton, T; Barrow, JD; Scherrer, RJ, Constraints on the variation of \(G\) from primordial nucleosynthesis, Phys. Rev. D, 71, 123526, (2005)
[90] Coc, A; Olive, KA; Uzan, J-P; Vangioni, E, Big bang nucleosynthesis constraints on scalar-tensor theories of gravity, Phys. Rev. D, 73, 083525, (2006)
[91] Coley, A, Schiff’s conjecture on gravitation, Phys. Rev. Lett., 49, 853-855, (1982)
[92] Colladay, D; Kostelecký, VA, CPT violation and the standard model, Phys. Rev. D, 55, 6760-6774, (1997)
[93] Colladay, D; Kostelecký, VA, Lorentz-violating extension of the standard model, Phys. Rev. D, 58, 116002, (1998)
[94] Copi, CJ; Davis, AN; Krauss, LM, New nucleosynthesis constraint on the variation of G, Phys. Rev. Lett., 92, 171301, (2004)
[95] Crelinsten, J., Einstein’s Jury: The Race to Test Relativity, (Princeton University Press, Princeton, 2006). (Cited on pages 16 and 43.) · Zbl 1104.01008
[96] Creminelli, P; Nicolis, A; Papucci, M; Trincherini, E, Ghosts in massive gravity, J. High Energy Phys., 2005, 003, (2005)
[97] Cutler, C; Flanagan, ÉÉ, Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral wave form?, Phys. Rev. D, 49, 2658-2697, (1994)
[98] Cutler, C; Hiscock, WA; Larson, SL, LISA, binary stars, and the mass of the graviton, Phys. Rev. D, 67, 024015, (2003)
[99] Cutler, C; etal., The last three minutes: issues in gravitational-wave measurements of coalescing compact binaries, Phys. Rev. Lett., 70, 2984-2987, (1993)
[100] Damour, T; Hawking, SW (ed.); Israel, W (ed.), The problem of motion in newtonian and Einsteinian gravity, 128-198, (1987), Cambridge; New York · Zbl 0966.83509
[101] Damour, T; Dyson, FJ, The oklo bound on the time variation of the fine-structure constant revisited, Nucl. Phys. B, 480, 37-54, (1996)
[102] Damour, T; Esposito-Farèse, G, Tensor-multi-scalar theories of gravitation, Class. Quantum Grav., 9, 2093-2176, (1992) · Zbl 0780.53054
[103] Damour, T; Esposito-Farèse, G, Nonperturbative strong-field effects in tensor-scalar theories of gravitation, Phys. Rev. Lett., 70, 2220-2223, (1993)
[104] Damour, T; Esposito-Farèse, G, Tensor-scalar gravity and binary-pulsar experiments, Phys. Rev. D, 54, 1474-1491, (1996) · Zbl 0932.93052
[105] Damour, T; Esposito-Farèse, G, Testing gravity to second post-Newtonian order: A field-theory approach, Phys. Rev. D, 53, 5541-5578, (1996)
[106] Damour, T; Esposito-Farèse, G, Gravitational-wave versus binary-pulsar tests of strong-field gravity, Phys. Rev. D, 58, 042001, (1998)
[107] Damour, T; Gopakumar, A; Iyer, BR, Phasing of gravitational waves from inspiralling eccentric binaries, Phys. Rev. D, 70, 064028, (2004) · Zbl 1071.83516
[108] Damour, T; Iyer, BR, Post-Newtonian generation of gravitational waves. II. the spin moments, Ann. Inst. Henri Poincare A, 54, 115-164, (1991) · Zbl 0746.53056
[109] Damour, T; Jaranowski, P; Schäfer, G, Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem, Phys. Rev. D, 62, 021501(r), (2000)
[110] Damour, T; Jaranowski, P; Schäfer, G, Dimensional regularization of the gravitational interaction of point masses, Phys. Lett. B, 513, 147-155, (2001) · Zbl 0969.83506
[111] Damour, T; Jaranowski, P; Schäfer, G, Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries, Phys. Rev. D, 63, 044021, (2001) · Zbl 0969.83506
[112] Damour, T; Jr, KL, General relativity as a cosmological attractor of tensor-scalar theories, Phys. Rev. Lett., 70, 2217-2219, (1993)
[113] Damour, T; Jr, KL, Tensor-scalar cosmological models and their relaxation toward general relativity, Phys. Rev. D, 48, 3436-3450, (1993)
[114] Damour, T; Piazza, F; Veneziano, G, Runaway Dilaton and equivalence principle violations, Phys. Rev. Lett., 89, 081601, (2002)
[115] Damour, T; Piazza, F; Veneziano, G, Violations of the equivalence principle in a Dilaton-runaway scenario, Phys. Rev. D, 66, 046007, (2002)
[116] Damour, T; Pichon, B, Big bang nucleosynthesis and tensor-scalar gravity, Phys. Rev. D, 59, 123502, (1999)
[117] Damour, T; Polyakov, AM, The string Dilaton and a least coupling principle, Nucl. Phys. B, 423, 532-558, (1994) · Zbl 0990.81645
[118] Damour, T; Schäfer, G, New tests of the strong equivalence principle using binary-pulsar data, Phys. Rev. Lett., 66, 2549-2552, (1991)
[119] Damour, T; Taylor, JH, Strong-field tests of relativistic gravity and binary pulsars, Phys. Rev. D, 45, 1840-1868, (1992)
[120] Damour, T; Vokrouhlický, D, Equivalence principle and the Moon, Phys. Rev. D, 53, 4177-4201, (1996)
[121] Daniel, SF; Linder, EV; Smith, TL; Caldwell, RR; Cooray, A; Leauthaud, A; Lombriser, L, Testing general relativity with current cosmological data, Phys. Rev. D, 81, 123508, (2010)
[122] De Felice, A. and Tsujikawa, S., “\(f\)(\(R\)) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010). [DOI], [ADS], [arXiv:1002.4928]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2010-3. (Cited on page 37.) · Zbl 1215.83005
[123] de Rham, C., “Massive Gravity”, Living Rev. Relativity, forthcoming (2014). [ADS], [arXiv:1401.4173 [hep-th]]. (Cited on page 41.) · Zbl 1320.83018
[124] Sitter, W, On einstein’s theory of gravitation and its astronomical consequences. second paper, Mon. Not. R. Astron. Soc., 77, 155-184, (1916)
[125] Deffayet, C; Dvali, G; Gabadadze, G; Vainshtein, AI, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D, 65, 044026, (2002)
[126] Deller, AT; Verbiest, JPW; Tingay, SJ; Bailes, M, Extremely high precision VLBI astrometry of PSR J0437-4715 and implications for theories of gravity, Astrophys. J. Lett., 685, l67-l70, (2008)
[127] Demorest, PB; Pennucci, T; Ransom, SM; Roberts, MSE; Hessels, JWT, A two-solar-mass neutron star measured using Shapiro delay, Nature, 467, 1081-1083, (2010)
[128] Di Casola, E., Liberati, S. and Sonego, S., “Nonequivalence of equivalence principles”, arXiv, e-print, (2013). [ADS], [arXiv:1310.7426 [gr-qc]]. (Cited on pages 10 and 30.)
[129] Dick, R, Inequivalence of Jordan and Einstein frame: what is the low energy gravity in string theory?, Gen. Relativ. Gravit., 30, 435-444, (1998) · Zbl 0915.53041
[130] Dicke, RH; DeWitt, CM (ed.); DeWitt, BS (ed.), Experimental relativity, 165-313, (1964), New York; London
[131] Dicke, R. H., Gravitation and the Universe, Memoirs of the American Philosophical Society. Jayne Lecture for 1969, 78, (American Philosophical Society, Philadelphia, 1970). (Cited on page 10.)
[132] Dickey, JO; etal., Lunar laser ranging: A continuing legacy of the apollo program, Science, 265, 482-490, (1994)
[133] Doeleman, S; etal., Imaging an event horizon: submm-VLBI of a super massive black hole, 68, (2009), Washington, DC
[134] Dossett, JN; Ishak, M, Spatial curvature and cosmological tests of general relativity, Phys. Rev. D, 86, 103008, (2012)
[135] Dossett, JN; Ishak, M; Moldenhauer, J, Testing general relativity at cosmological scales: implementation and parameter correlations, Phys. Rev. D, 84, 123001, (2011)
[136] Drever, RWP, A search for anisotropy of inertial mass using a free precession technique, Philos. Mag., 6, 683-687, (1961)
[137] Dyda, S; Flanagan, ÉÉ; Kamionkowski, M, Vacuum instability in Chern-Simons gravity, Phys. Rev. D, 86, 124031, (2012)
[138] Dyson, FJ; Salam, A (ed.); Wigner, EP (ed.), The fundamental constants and their time variation, 213-236, (1972), Cambridge; New York
[139] Eardley, DM, Observable effects of a scalar gravitational field in a binary pulsar, Astrophys. J. Lett., 196, l59-l62, (1975)
[140] Eddington, A; Clark, GL, The problem of n bodies in general relativity theory, Proc. R. Soc. London, Ser. A, 166, 465-475, (1938) · Zbl 0019.09105
[141] Eddington, AS, The propagation of gravitational waves, Proc. R. Soc. London, Ser. A, 102, 268-282, (1922) · JFM 49.0640.04
[142] Ehlers, J; Rosenblum, A; Goldberg, JN; Havas, P, Comments on gravitational radiation damping and energy loss in binary systems, Astrophys. J. Lett., 208, l77-l81, (1976)
[143] Einstein, A., “Näherungsweise Integration der Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916, 688-696, (1916). [ADS]. Online version (accessed 5 June 2014): http://echo.mpiwg-berlin.mpg.de/MPIWG:RA6W5W65. (Cited on page 57.) · JFM 46.1293.02
[144] Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154-167, (1918). [ADS]. (Cited on page 57.) · JFM 46.1295.02
[145] Einstein, A; Infeld, L; Hoffmann, B, The gravitational equations and the problem of motion, Ann. Math., 39, 65-100, (1938) · Zbl 0018.28103
[146] Einstein, A; Rosen, N, On gravitational waves, J. Franklin Inst., 223, 43-54, (1937) · JFM 63.1259.03
[147] Eling, C; Jacobson, T, Static post-Newtonian equivalence of general relativity and gravity with a dynamical preferred frame, Phys. Rev. D, 69, 064005, (2004)
[148] Eötvös, R. v., Pekár, V. and Fekete, E., “Beitrage zum Gesetze der Proportionalität von Trägheit und Gravität”, Ann. Phys. (Leipzig), 68, 11-66, (1922). [DOI], [ADS]. (Cited on page 10.)
[149] Everitt, CWF; etal., Gravity probe B: final results of a space experiment to test general relativity, Phys. Rev. Lett., 106, 221101, (2011)
[150] Famaey, B. and McGaugh, S. S., “Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions”, Living Rev. Relativity, 15, lrr-2012-10 (2012). [DOI], [ADS], [arXiv:1112.3960 [astro-ph.CO]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2012-10. (Cited on page 40.)
[151] Farley, FJM; Bailey, J; Brown, RCA; Giesch, M; Jöstlein, H; Meer, S; Picasso, E; Tannenbaum, M, The anomalous magnetic moment of the negative muon, Nuovo Cimento, 45, 281-286, (1966)
[152] Fienga, A; Laskar, J; Kuchynka, P; Manche, H; Desvignes, G; Gastineau, M; Cognard, I; Theureau, G, The INPOP10a planetary ephemeris and its applications in fundamental physics, Celest. Mech. Dyn. Astron., 111, 363-385, (2011)
[153] Finn, LS; Chernoff, DF, Observing binary inspiral in gravitational radiation: one interferometer, Phys. Rev. D, 47, 2198-2219, (1993)
[154] Finn, LS; Sutton, PJ, Bounding the mass of the graviton using binary pulsar observations, Phys. Rev. D, 65, 044022, (2002) · Zbl 0999.83505
[155] Fischbach, E; Gillies, GT; Krause, DE; Schwan, JG; Talmadge, CL, Non-Newtonian gravity and new weak forces: an index of measurements and theory, Metrologia, 29, 213-260, (1992)
[156] Fischbach, E; Sudarsky, D; Szafer, A; Talmadge, CL; Aronson, SH, Reanalysis of the Eötvös experiment, Phys. Rev. Lett., 56, 3-6, (1986)
[157] Fischbach, E; Talmadge, CL, Six years of the fifth force, Nature, 356, 207-215, (1992)
[158] Fischbach, E. and Talmadge, C. L., The Search for Non-Newtonian Gravity, (Springer, New York, 1998). [Google Books]. (Cited on page 27.) · Zbl 0942.83001
[159] Fischer, M; etal., New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett., 92, 230802, (2004)
[160] Fock, V. A., The Theory of Space, Time and Gravitation, (Pergamon Press, Oxford; New York, 1964), 2nd rev. edition. (Cited on page 58.) · Zbl 0085.42301
[161] Fomalont, E; Kopeikin, S; Lanyi, G; Benson, J, Progress in measurements of the gravitational bending of radio waves using the VLBA, Astrophys. J., 699, 1395-1402, (2009)
[162] Fomalont, EB; Kopeikin, SM, The measurement of the light deflection from Jupiter: experimental results, Astrophys. J., 598, 704-711, (2003)
[163] Foster, BZ; Jacobson, T, Post-Newtonian parameters and constraints on Einstein-aether theory, Phys. Rev. D, 73, 064015, (2006)
[164] Freire, PCC; etal., The relativistic pulsar-white dwarf binary PSR J1738+0333 — II. the most stringent test of scalar-tensor gravity, Mon. Not. R. Astron. Soc., 423, 3328-3343, (2012)
[165] Froeschlé, M; Mignard, F; Arenou, F, Determination of the PPN parameter \(γ\) with the hipparcos data, (1997), Noordwijk, Netherlands
[166] Fujii, Y; Karshenboim, SG (ed.); Peik, E (ed.), Oklo constraint on the time-variability of the fine-structure constant, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Berlin; New York
[167] Fujii, Y. and Maeda, K.-I., The Scalar-Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2007). [ADS]. (Cited on page 37.) · Zbl 1146.83012
[168] Fujita, R, Gravitational waves from a particle in circular orbits around a Schwarzschild black hole to the 22nd post-Newtonian order, Prog. Theor. Phys., 128, 971-992, (2012)
[169] “Gaia: Science Home Page”, project homepage, ESA. URL (accessed 28 March 2014): http://www.cosmos.esa.int/web/gaia/. (Cited on page 54.)
[170] Gair, J. R., Vallisneri, M., Larson, S. L. and Baker, J. G., “Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors”, Living Rev. Relativity, 16, lrr-2013-7 (2013). [DOI], [ADS], [arXiv:1212.5575 [gr-qc]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2013-7. (Cited on page 79.) · Zbl 0969.83506
[171] Gasperini, M, On the response of gravitational antennas to dilatonic waves, Phys. Lett. B, 470, 67-72, (1999) · Zbl 0993.83003
[172] Geraci, AA; Smullin, SJ; Weld, DM; Chiaverini, J; Kapitulnik, A, Improved constraints on non-Newtonian forces at 10 microns, Phys. Rev. D, 78, 022002, (2008)
[173] Gleiser, RJ; Kozameh, CN, Astrophysical limits on quantum gravity motivated birefringence, Phys. Rev. D, 64, 083007, (2001)
[174] Godone, A; Novero, C; Tavella, P, Null gravitational redshift experiment with nonidentical atomic clocks, Phys. Rev. D, 51, 319-323, (1995)
[175] Gopakumar, A; Iyer, BR, Gravitational waves from inspiraling compact binaries: angular momentum flux, evolution of the orbital elements and the waveform to the second post-Newtonian order, Phys. Rev. D, 56, 7708-7731, (1997)
[176] Gourgoulhon, E., 3+1 Formalism in General Relativity: Bases of Numerical Relativity, Lecture Notes in Physics, 846, (Springer, Berlin; New York, 2012). [DOI], [ADS], [arXiv:gr-qc/0703035 [gr-qc]]. (Cited on page 55.) · Zbl 1254.83001
[177] “Gravity Probe B: Testing Einstein’s Universe”, project homepage, Stanford University. URL (accessed 28 March 2014): http://einstein.stanford.edu/. (Cited on page 51.)
[178] Grishchuk, LP; Kopeikin, SM, The motion of a pair of gravitating bodies including the radiation reaction force, Sov. Astron. Lett., 9, 230-232, (1983)
[179] Guéna, J; Abgrall, M; Rovera, D; Rosenbusch, P; Tobar, ME; Laurent, P; Clairon, A; Bize, S, Improved tests of local position invariance using rb87 and Cs133 fountains, Phys. Rev. Lett., 109, 080801, (2012)
[180] Guenther, DB; Krauss, LM; Demarque, P, Testing the constancy of the gravitational constant using helioseismology, Astrophys. J., 498, 871-876, (1998)
[181] Haugan, MP, Energy conservation and the principle of equivalence, Ann. Phys. (N.Y.), 118, 156-186, (1979)
[182] Haugan, MP; Lämmerzahl, C, On the interpretation of michelson-Morley experiments, Phys. Lett. A, 282, 223-229, (2001) · Zbl 0986.83003
[183] Haugan, MP; Lämmerzahl, C; Lämmerzahl, C (ed.); Everitt, CWF (ed.); Hehl, FW (ed.), Principles of equivalence: their role in gravitation physics and experiments that test them, Proceedings of a meeting, Bad Honnef, Germany, 21-7 August 1999, Berlin; New York · Zbl 0982.83011
[184] Haugan, MP; Will, CM, Modern tests of special relativity, Phys. Today, 40, 69-76, (1987)
[185] Hawking, SW, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys., 25, 167-171, (1972)
[186] Hees, A., Folkner, W. M., Jacobson, R. A. and Park, R. S., “Constraints on MOND theory from radio tracking data of the Cassini spacecraft”, arXiv, e-print, (2014). [ADS], [arXiv:1402.6950 [gr-qc]]. (Cited on page 40.)
[187] Hellings, RW; Jr, KL, Vector-metric theory of gravity, Phys. Rev. D, 7, 3593-3602, (1973) · Zbl 0755.58069
[188] Hinterbichler, K, Theoretical aspects of massive gravity, Rev. Mod. Phys., 84, 671-710, (2012)
[189] Hojjati, A; Zhao, G-B; Pogosian, L; Silvestri, A; Crittenden, R; Koyama, K, Cosmological tests of general relativity: A principal component analysis, Phys. Rev. D, 85, 043508, (2012)
[190] Hořava, P, Quantum gravity at a Lifshitz point, Phys. Rev. D, 79, 084008, (2009)
[191] Horbatsch, MW; Burgess, CP, Cosmic black-hole hair growth and quasar OJ287, J. Cosmol. Astropart. Phys., 2012, 010, (2012)
[192] Hoyle, CD; Kapner, DJ; Heckel, BR; Adelberger, EG; Gundlach, JH; Schmidt, U; Swanson, HE, Submillimeter tests of the gravitational inverse-square law, Phys. Rev. D, 70, 042004, (2004)
[193] Hoyle, CD; Schmidt, U; Heckel, BR; Adelberger, EG; Gundlach, JH; Kapner, DJ; Swanson, HE, Submillimeter test of the gravitational inverse-square law: A search for ‘large’ extra dimensions, Phys. Rev. Lett., 86, 1418-1421, (2001)
[194] Hughes, VW; Robinson, HG; Beltran-Lopez, V, Upper limit for the anisotropy of inertial mass from nuclear resonance experiments, Phys. Rev. Lett., 4, 342-344, (1960)
[195] Hulse, RA, Nobel lecture: the discovery of the binary pulsar, Rev. Mod. Phys., 66, 699-710, (1994)
[196] Hulse, RA; Taylor, JH, Discovery of a pulsar in a binary system, Astrophys. J. Lett., 195, l51-l53, (1975) · Zbl 1192.82066
[197] Iorio, L, On the reliability of the so-far performed tests for measuring the lense-Thirring effect with the LAGEOS satellites, New Astron., 10, 603-615, (2005)
[198] Itoh, Y; Futamase, T, New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity, Phys. Rev. D, 68, 121501(r), (2003)
[199] Ivanchik, A; Petitjean, P; Varshalovich, D; Aracil, B; Srianand, R; Chand, H; Ledoux, C; Boissé, P, A new constraint on the time dependence of the proton-to-electron mass ratio: analysis of the Q 0347-383 and Q 0405-443 spectra, Astron. Astrophys., 440, 45-52, (2005)
[200] Ives, HE; Stilwell, GR, An experimental study of the rate of a moving atomic clock, J. Opt. Soc. Am., 28, 215-226, (1938)
[201] Jackiw, R; Pi, S-Y, Chern-Simons modification of general relativity, Phys. Rev. D, 68, 104012, (2003)
[202] Jacobson, T, Primordial black hole evolution in tensor-scalar cosmology, Phys. Rev. Lett., 83, 2699-2702, (1999) · Zbl 0951.83029
[203] Jacobson, T, Undoing the twist: the Hořava limit of Einstein-æther theory, Phys. Rev. D, 89, 081501, (2014)
[204] Jacobson, T; Mattingly, D, Gravity with a dynamical preferred frame, Phys. Rev. D, 64, 024028, (2001) · Zbl 1104.83307
[205] Jacobson, T; Mattingly, D, Einstein-aether waves, Phys. Rev. D, 70, 024003, (2004)
[206] Jaranowski, P; Schäfer, G, 3rd post-Newtonian higher order Hamilton dynamics for two-body point-mass systems, Phys. Rev. D, 57, 7274-7291, (1998)
[207] Jaranowski, P; Schäfer, G, Binary black-hole problem at the third post-Newtonian approximation in the orbital motion: static part, Phys. Rev. D, 60, 124003, (1999) · Zbl 0971.83041
[208] Jaseja, TS; Javan, A; Murray, J; Townes, CH, Test of special relativity or of the isotropy of space by use of infrared masers, Phys. Rev., 133, a1221-a1225, (1964) · Zbl 0119.22102
[209] Jones, DI, Bounding the mass of the graviton using eccentric binaries, Astrophys. J. Lett., 618, l115-l118, (2005)
[210] Kanekar, N; Langston, GI; Stocke, JT; Carilli, CL; Menten, KM, Constraining fundamental constant evolution with H I and OH lines, Astrophys. J. Lett., 746, l16, (2012)
[211] Kapner, DJ; Cook, TS; Adelberger, EG; Gundlach, JH; Heckel, BR; Hoyle, CD; Swanson, HE, Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett., 98, 021101, (2007)
[212] Katz, JI, Comment on ‘indication, from pioneer 10/11, galileo, and ulysses data, of an apparent anomalous, weak, long-range acceleration’, Phys. Rev. Lett., 83, 1892, (1999)
[213] Kennefick, D, Einstein versus the physical review, Phys. Today, 58, 43-48, (2005)
[214] Kennefick, D., Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, (Princeton University Press, Princeton; Woodstock, UK, 2007). [ADS], [Google Books]. (Cited on page 58.) · Zbl 1120.01013
[215] Kennefick, D, Testing relativity from the 1919 eclipse — a question of bias, Phys. Today, 62, 37, (2009)
[216] Khoury, J; Weltman, A, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett., 93, 171104, (2004)
[217] King, JA; Webb, JK; Murphy, MT; Flambaum, VV; Carswell, RF; Bainbridge, MB; Wilczynska, MR; Koch, FE, Spatial variation in the fine-structure constant — new results from VLT/UVES, Mon. Not. R. Astron. Soc., 422, 3370-3414, (2012)
[218] Klimchitskaya, GL; Mohideen, U; Mostepanenko, VM, Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces, Phys. Rev. D, 87, 125031, (2013)
[219] Kokkotas, K. D. and Schmidt, B. G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2 (1999). [DOI], [ADS], [arXiv:gr-qc/9909058]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-1999-2. (Cited on pages 55 and 62.) · Zbl 0984.83002
[220] Konopliv, AS; Asmar, SW; Folkner, WM; Karatekin, Ö; Nunes, DC; Smrekar, SE; Yoder, CF; Zuber, MT, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters, Icarus, 211, 401-428, (2011)
[221] Kopeikin, SM, Testing the relativistic effect of the propagation of gravity by very long baseline interferometry, Astrophys. J. Lett., 556, l1-l5, (2001)
[222] Kopeikin, SM, The post-Newtonian treatment of the VLBI experiment on September 8, 2002, Phys. Lett. A, 312, 147-157, (2003)
[223] Kopeikin, SM, The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment, Class. Quantum Grav., 21, 3251-3286, (2004) · Zbl 1061.83503
[224] Kopeikin, SM, Comment on ‘model-dependence of Shapiro time delay and the ‘speed of gravity/speed of light’ controversy’, Class. Quantum Grav., 22, 5181, (2005) · Zbl 1088.83502
[225] Kopeikin, SM, Comments on ‘on the speed of gravity and the Jupiter/quasar measurement’ by S. Samuel, Int. J. Mod. Phys. D, 15, 273-288, (2006) · Zbl 1099.83513
[226] Kopeikin, SM; Fomalont, EB; Ros, E (ed.); Porcas, RW (ed.); Lobanov, AP (ed.); Zensus, JA (ed.), General relativistic model for experimental measurement of the speed of propagation of gravity by VLBI, 49-52, (2002), Bonn
[227] Kostelecký, VA; Lane, CD, Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D, 60, 116010, (1999)
[228] Kostelecký, VA; Mewes, M, Signals for Lorentz violation in electrodynamics, Phys. Rev. D, 66, 056005, (2002)
[229] Kostelecký, VA; Russell, N, Data tables for Lorentz and CPT violation, Rev. Mod. Phys., 83, 11-31, (2011)
[230] Kostelecký, VA; Samuel, S, Gravitational phenomenology in higher-dimensional theories and strings, Phys. Rev. D, 40, 1886-1903, (1989)
[231] Kramer, M, Determination of the geometry of the PSR B1913+16 system by geodetic precession, Astrophys. J., 509, 856-860, (1998)
[232] Kramer, M; etal., Tests of general relativity from timing the double pulsar, Science, 314, 97-102, (2006)
[233] Krisher, TP; Anderson, JD; Campbell, JK, Test of the gravitational redshift effect at saturn, Phys. Rev. Lett., 64, 1322-1325, (1990)
[234] Krisher, TP; Maleki, L; Lutes, GF; Primas, LE; Logan, RT; Anderson, JD; Will, CM, Test of the isotropy of the one-way speed of light using hydrogen-maser frequency standards, Phys. Rev. D, 42, 731-734, (1990)
[235] Krisher, TP; Morabito, DD; Anderson, JD, The galileo solar redshift experiment, Phys. Rev. Lett., 70, 2213-2216, (1993)
[236] Królak, A; Kokkotas, KD; Schäfer, G, Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary, Phys. Rev. D, 52, 2089-2111, (1995)
[237] Lambert, SB; Poncin-Lafitte, C, Determining the relativistic parameter \(γ\) using very long baseline interferometry, Astron. Astrophys., 499, 331-335, (2009) · Zbl 1177.85010
[238] Lambert, SB; Poncin-Lafitte, C, Improved determination of \(γ\) by VLBI, Astron. Astrophys., 529, a70, (2011)
[239] Lämmerzahl, C; Giulini, DJW (ed.); Kiefer, C (ed.); Lämmerzahl, C (ed.), The Einstein equivalence principle and the search for new physics, No. 631, 367-394, (2003), Berlin; New York
[240] Lamoreaux, SK; Jacobs, JP; Heckel, BR; Raab, FJ; Fortson, EN, New limits on spatial anisotropy from optically-pumped \^{}{201}hg and \^{}{199}hg, Phys. Rev. Lett., 57, 3125-3128, (1986)
[241] Lang, RN, Compact binary systems in scalar-tensor gravity. II. tensor gravitational waves to second post-Newtonian order, Phys. Rev. D, 89, 084014, (2014)
[242] Lazaridis, K; etal., Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant, Mon. Not. R. Astron. Soc., 400, 805-814, (2009)
[243] Lebach, DE; Corey, BE; Shapiro, II; Ratner, MI; Webber, JC; Rogers, AEE; Davis, JL; Herring, TA, Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry, Phys. Rev. Lett., 75, 1439-1442, (1995)
[244] Lee, K; Jenet, FA; Price, RH; Wex, N; Kramer, M, Detecting massive gravitons using pulsar timing arrays, Astrophys. J., 722, 1589-1597, (2010)
[245] Lee, KJ; Jenet, FA; Price, RH, Pulsar timing as a probe of non-Einsteinian polarizations of gravitational waves, Astrophys. J., 685, 1304-1319, (2008)
[246] Leefer, N; Weber, CTM; Cingöz, A; Torgerson, JR; Budker, D, New limits on variation of the fine-structure constant using atomic dysprosium, Phys. Rev. Lett., 111, 060801, (2013)
[247] Lehner, L, Numerical relativity: a review, Class. Quantum Grav., 18, r25-r86, (2001) · Zbl 0987.83001
[248] Lentati, L; etal., Variations in the fundamental constants in the QSO host J1148+5251 at \(z\) = 6.4 and the BR1202-0725 system at \(z\) = 4.7, Mon. Not. R. Astron. Soc., 430, 2454-2463, (2013)
[249] Levi-Civita, T, Astronomical consequences of the relativistic two-body problem, Am. J. Math., 59, 225-334, (1937) · Zbl 0016.28203
[250] Li, TGF; etal., Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: further investigations, J. Phys.: Conf. Ser., 363, 012028, (2012)
[251] Liberati, S, Tests of Lorentz invariance: a 2013 update, Class. Quantum Grav., 30, 133001, (2013) · Zbl 1273.83002
[252] Lightman, AP; Lee, DL, Restricted proof that the weak equivalence principle implies the Einstein equivalence principle, Phys. Rev. D, 8, 364-376, (1973)
[253] Lineweaver, CH; Tenorio, L; Smoot, GF; Keegstra, P; Banday, AJ; Lubin, P, The dipole observed in the COBE DMR 4 year data, Astrophys. J., 470, 38-42, (1996)
[254] Lipa, JA; Nissen, JA; Wang, S; Stricker, DA; Avaloff, D, New limit on signals of Lorentz violation in electrodynamics, Phys. Rev. Lett., 90, 060403, (2003)
[255] Liu, K; Wex, N; Kramer, M; Cordes, JM; Lazio, TJW, Prospects for probing the spacetime of sgr A* with pulsars, Astrophys. J., 747, 1, (2012)
[256] Lobo, JA; Coccia, E (ed.); Veneziano, G (ed.); Pizzella, G (ed.), Spherical GW detectors and geometry, Proceedings ofthe conference, CERN, Switzerland, 1-4 July, 1997, Singapore
[257] Long, JC; Chan, HW; Churnside, AB; Gulbis, EA; Varney, MCM; Price, JC, Upper limits to submillimetre-range forces from extra space-time dimensions, Nature, 421, 922-925, (2003)
[258] Long, JC; Chan, HW; Price, JC, Experimental status of gravitational-strength forces in the sub-centimeter regime, Nucl. Phys. B, 539, 23-34, (1999)
[259] LoPresto, JC; Schrader, C; Pierce, AK, Solar gravitational redshift from the infrared oxygen triplet, Astrophys. J., 376, 757-760, (1991)
[260] Lorentz, HA; Droste, J, The motion of a system of bodies under the influence of their mutual attraction, according to einstein’s theory, 330-355, (1937), The Hague
[261] Lorimer, D. R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8 (2008). [DOI], [ADS], [arXiv:0811.0762]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2008-8. (Cited on page 68.) · Zbl 1166.85301
[262] Lucchesi, DM; Peron, R, Accurate measurement in the field of the Earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-Newtonian gravity, Phys. Rev. Lett., 105, 231103, (2010)
[263] Lucchesi, DM; Peron, R, LAGEOS II pericenter general relativistic precession (1993-2005): error budget and constraints in gravitational physics, Phys. Rev. D, 89, 082002, (2014)
[264] Lynch, RS; etal., The Green bank telescope 350 mhz drift-scan survey II: data analysis and the timing of 10 new pulsars, including a relativistic binary, Astrophys. J., 763, 81, (2013)
[265] Lyne, AG; etal., A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics, Science, 303, 1153-1157, (2004)
[266] Maeda, K-I, On time variation of fundamental constants in superstring theories, Mod. Phys. Lett. A, 3, 243-249, (1988)
[267] Maggiore, M; Nicolis, A, Detection strategies for scalar gravitational waves with interferometers and resonant spheres, Phys. Rev. D, 62, 024004, (2000)
[268] Magueijo, J, New varying speed of light theories, Rep. Prog. Phys., 66, 2025-2068, (2003)
[269] Malaney, RA; Mathews, GJ, Probing the early universe: A review of primordial nucleosynthesis beyond the standard big bang, Phys. Rep., 229, 147-219, (1993)
[270] Maleki, L; Prestage, JD; Lämmerzahl, C (ed.); Everitt, CWF (ed.); Hehl, FW (ed.), Spacetime mission: clock test of relativity at four solar radii, Proceedings of a meeting, Bad Honnef, Germany, August 21-27, 1999, Berlin; New York
[271] Marion, H; etal., A search for variations of fundamental constants using atomic Fountain clock, Phys. Rev. Lett., 90, 150801, (2003)
[272] Marka, Z; Marka, S, Selected articles from ‘the 8th edoardo amaldi conference on gravitational waves (amaldi 8)’, columbia university, New York, 22-26 June 2009, Class. Quantum Grav., 27, 080301, (2010)
[273] Mattingly, D., “Modern Tests of Lorentz Invariance”, Living Rev. Relativity, 8, lrr-2005-5 (2005). [DOI], [ADS], [arXiv:gr-qc/0502097]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2005-5. (Cited on pages 15 and 24.) · Zbl 1255.83059
[274] Mattingly, D; Jacobson, TA; Kostelecký, VA (ed.), Relativistic gravity with a dynamical preferred frame, Proceedings of the Second Meeting, Indiana University, Bloomington, August 15-18, 2001, Singapore; River Edge · Zbl 1104.83307
[275] Mecheri, R; Abdelatif, T; Irbah, A; Provost, J; Berthomieu, G, New values of gravitational moments \(J\)_{2} and \(J\)_{4} deduced from helioseismology, Solar Phys., 222, 191-197, (2004)
[276] Mercuri, S; Taveras, V, Interaction of the Barbero-Immirzi field with matter and pseudoscalar perturbations, Phys. Rev. D, 80, 104007, (2009)
[277] Merkowitz, S. M., “Tests of Gravity Using Lunar Laser Ranging”, Living Rev. Relativity, 13, lrr-2010-7 (2010). [DOI], [ADS]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2010-7. (Cited on page 48.) · Zbl 1215.83007
[278] Merlet, S; Bodart, Q; Malossi, N; Landragin, APD; Santos, F; Gitlein, O; Timmen, L, Comparison between two mobile absolute gravimeters: optical versus atomic interferometers, Metrologia, 47, l9-l11, (2010)
[279] Michelson, AA; Morley, EW, On the relative motion of the Earth and the luminiferous ether, Am. J. Sci., 34, 333-345, (1887) · JFM 19.1084.01
[280] “MICROSCOPE (MICRO-Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence)”, project homepage, CNES. URL (accessed 28 March 2014): http://smsc.cnes.fr/MICROSCOPE/. (Cited on page 12.)
[281] Mignard, F; Bienaymé, O (ed.); Turon, C (ed.), Fundamental physics with GAIA, Summer School, Les Houches, France, 14-18 May 2001, Les Ulis
[282] Milani, A; Vokrouhlický, D; Villani, D; Bonanno, C; Rossi, A, Testing general relativity with the bepicolombo radio science experiment, Phys. Rev. D, 66, 082001, (2002)
[283] Milgrom, M, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., 270, 365-370, (1983)
[284] Milgrom, M, MOND effects in the inner solar system, Mon. Not. R. Astron. Soc., 399, 474-486, (2009)
[285] Mino, Y; Sasaki, M; Shibata, M; Tagoshi, H; Tanaka, T, Black hole perturbation, Prog. Theor. Phys. Suppl., 128, 1-121, (1997) · Zbl 0985.83510
[286] Mirshekari, S; Will, CM, Compact binary systems in scalar-tensor gravity: equations of motion to 2.5 post-Newtonian order, Phys. Rev. D, 87, 084070, (2013)
[287] Mirshekari, S; Yunes, N; Will, CM, Constraining Lorentz-violating, modified dispersion relations with gravitational waves, Phys. Rev. D, 85, 024041, (2012)
[288] Mishra, CK; Arun, KG; Iyer, BR; Sathyaprakash, BS, Parametrized tests of post-Newtonian theory using advanced LIGO and Einstein telescope, Phys. Rev. D, 82, 064010, (2010)
[289] Misner, C. W., Thorne, K. S. and Wheeler, J. A., Gravitation, (W. H. Freeman, San Francisco, 1973). [ADS]. (Cited on pages 28 and 32.)
[290] Mitchell, T; Will, CM, Post-newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. evidence for the strong equivalence principle to second post-Newtonian order, Phys. Rev. D, 75, 124025, (2007)
[291] Modenini, D. and Tortora, P., “Pioneer 10 and 11 orbit determination analysis shows no discrepancy with Newton-Einstein’s laws of gravity”, arXiv, e-print, (2013). [ADS], [arXiv:1311.4978 [gr-qc]]. (Cited on page 27.)
[292] Moura, F; Schiappa, R, Higher-derivative-corrected black holes: perturbative stability and absorption cross section in heterotic string theory, Class. Quantum Grav., 24, 361-386, (2007) · Zbl 1107.83051
[293] Müller, H; Herrmann, S; Braxmaier, C; Schiller, S; Peters, A, Modern michelson-Morley experiment using cryogenic optical resonators, Phys. Rev. Lett., 91, 020401, (2003)
[294] Müller, H; Peters, A; Chu, S, A precision measurement of the gravitational redshift by the interference of matter waves, Nature, 463, 926-929, (2010)
[295] Müller, J; Schneider, MN; Jr, KL; Vokrouhlický, D; Piran, T (ed.), What can LLR provide to relativity?, roceedings of the meeting, Hebrew University of Jerusalem, June 22-27, 1997, Singapore
[296] Murphy, MT; Webb, JK; Flambaum, VV; Dzuba, VA; Churchill, CW; Prochaska, JX; Barrow, JD; Wolfe, AM, Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results, Mon. Not. R. Astron. Soc., 327, 1208-1222, (2001)
[297] Murphy, TW; etal., Laser ranging to the lost lunokhod 1 reflector, Icarus, 211, 1103-1108, (2011)
[298] Murphy, TW; Adelberger, EG; Battat, JBR; Hoyle, CD; Johnson, NH; McMillan, RJ; Stubbs, CW; Swanson, HE, APOLLO: millimeter lunar laser ranging, Class. Quantum Grav., 29, 184005, (2012)
[299] Narayan, R; McClintock, JE, Advection-dominated accretion and the black hole event horizon, New Astron. Rev., 51, 733-751, (2008)
[300] Ni, W-T, Equivalence principles and electromagnetism, Phys. Rev. Lett., 38, 301-304, (1977)
[301] Nishizawa, A; Taruya, A; Hayama, K; Kawamura, S; Sakagami, M-A, Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers, Phys. Rev. D, 79, 082002, (2009)
[302] Nishizawa, A; Taruya, A; Kawamura, S, Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1-1 hz, Phys. Rev. D, 81, 104043, (2010)
[303] Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”, Ann. Phys. (Leipzig), 42, 533-554, (1913). [DOI]. (Cited on page 30.) · JFM 44.0890.02
[304] Nordtvedt, KL, Equivalence principle for massive bodies. I. phenomenology, Phys. Rev., 169, 1014-1016, (1968)
[305] Nordtvedt, KL, Equivalence principle for massive bodies. II. theory, Phys. Rev., 169, 1017-1025, (1968) · Zbl 1025.83500
[306] Nordtvedt, KL, Existence of the gravitomagnetic interaction, Int. J. Theor. Phys., 27, 1395-1404, (1988) · Zbl 0662.70020
[307] Nordtvedt, KL, Gravitomagnetic interaction and laser ranging to Earth satellites, Phys. Rev. Lett., 61, 2647-2649, (1988)
[308] Nordtvedt, KL, ġ/G and a cosmological acceleration of gravitationally compact bodies, Phys. Rev. Lett., 65, 953-956, (1990)
[309] Nordtvedt, KL, The relativistic orbit observables in lunar laser ranging, Icarus, 114, 51-62, (1995)
[310] Nordtvedt, KL, Testing newton’s third law using lunar laser ranging, Class. Quantum Grav., 18, l133-l137, (2001) · Zbl 0995.83501
[311] Ohanian, HC, Comment on the Schiff conjecture, Phys. Rev. D, 10, 2041-2042, (1974)
[312] Olive, KA; Pospelov, M; Qian, Y-Z; Manhes, G; Vangioni-Flam, E; Coc, A; Cassé, M, Reexamination of the \^{}{187}re bound on the variation of fundamental couplings, Phys. Rev. D, 69, 027701, (2004)
[313] Palenzuela, C; Barausse, E; Ponce, M; Lehner, L, Dynamical scalarization of neutron stars in scalar-tensor gravity theories, Phys. Rev. D, 89, 044024, (2014)
[314] Pani, P; Cardoso, V, Are black holes in alternative theories serious astrophysical candidates? the case for Einstein-Dilaton-Gauss-Bonnet black holes, Phys. Rev. D, 79, 084031, (2009)
[315] Paolozzi, A; Ciufolini, I, LARES successfully launched in orbit: satellite and mission description, Acta Astronaut., 91, 313-321, (2013)
[316] Pati, ME; Will, CM, Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: foundations, Phys. Rev. D, 62, 124015, (2000)
[317] Pati, ME; Will, CM, Post-newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. two-body equations of motion to second post-newtonian order, and radiation reaction to 3.5 post-Newtonian order, Phys. Rev. D, 65, 104008, (2002)
[318] Peik, E; Lipphardt, B; Schnatz, H; Schneider, T; Tamm, C, Limit on the present temporal variation of the fine structure constant, Phys. Rev. Lett., 93, 170801, (2004)
[319] Peil, S; Crane, S; Hanssen, JL; Swanson, TB; Ekstrom, CR, Tests of local position invariance using continuously running atomic clocks, Phys. Rev. A, 87, 010102, (2013)
[320] Petrov, YV; Nazarov, AI; Onegin, MS; Petrov, VY; Sakhnovsky, EG, Natural nuclear reactor at oklo and variation of fundamental constants: computation of neutronics of a fresh core, Phys. Rev. C, 74, 064610, (2006)
[321] Pitjeva, EV, Relativistic effects and solar oblateness from radar observations of planets and spacecraft, Astron. Lett., 31, 340-349, (2005)
[322] Poisson, E, Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers, Phys. Rev. D, 54, 5939-5953, (1996)
[323] Poisson, E; Will, CM, Gravitational waves from inspiraling compact binaries: parameter estimation using second-post-Newtonian wave forms, Phys. Rev. D, 52, 848-855, (1995)
[324] Poisson, E. and Will, C. M., Gravity: Newtonian, Post-Newtonian, Relativistic, (Cambridge University Press, Cambridge, 2014). (Cited on pages 28, 35, 36, 59, 80, and 82.) · Zbl 1334.83001
[325] Prestage, JD; Bollinger, JJ; Itano, WM; Wineland, DJ, Limits for spatial anisotropy by use of nuclear-spin-polarized \^{}{9}be\^{}{+} ions, Phys. Rev. Lett., 54, 2387-2390, (1985)
[326] Prestage, JD; Tjoelker, RL; Maleki, L, Atomic clocks and variation of the fine structure constant, Phys. Rev. Lett., 74, 3511-3514, (1995)
[327] Psaltis, D; Kaaret, P (ed.); Lamb, FK (ed.); Swank, JH (ed.), Measurements of black hole spins and tests of strong-field general relativity, Proceedings of the conference, Cambridge, MA, 3-5 November 2003, Melville, NY
[328] Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [DOI], [ADS], [arXiv:0806.1531]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2008-9. (Cited on page 87.) · Zbl 1166.85302
[329] Quast, R; Reimers, D; Levshakov, SA, Probing the variability of the fine-structure constant with the VLT/UVES, Astron. Astrophys., 415, l7-l11, (2004)
[330] Randall, L; Sundrum, R, An alternative to compactification, Phys. Rev. Lett., 83, 4690-4693, (1999) · Zbl 0946.81074
[331] Randall, L; Sundrum, R, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370-3373, (1999) · Zbl 0946.81063
[332] Ransom, SM; etal., A millisecond pulsar in a stellar triple system, Nature, 505, 520-524, (2014)
[333] Reasenberg, RD; etal., Viking relativity experiment: verification of signal retardation by solar gravity, Astrophys. J. Lett., 234, l219-l221, (1979)
[334] Reeves, H, On the origin of the light elements (\(Z\) < 6), Rev. Mod. Phys., 66, 193-216, (1994)
[335] Reynaud, S; Salomon, C; Wolf, P, Testing general relativity with atomic clocks, Space Sci. Rev., 148, 233-247, (2009)
[336] Reynolds, C. S., “Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy”, Space Sci. Rev. (2013). [DOI], [ADS], [arXiv:1302.3260 [astro-ph.HE]]. (Cited on page 87.)
[337] Reynolds, CS, The spin of supermassive black holes, Class. Quantum Grav., 30, 244004, (2013) · Zbl 1284.83009
[338] Ries, JC; Eanes, RJ; Tapley, BD; Peterson, GE; Noomen, R (ed.); Klosko, S (ed.); Noll, C (ed.); Pearlman, M (ed.), Prospects for an improved lense-Thirring test with SLR and the GRACE gravity mission, Proceedings from the Science Session and Full Proceedings CD-ROM, Washington, DC, October 07-11, 2002
[339] Rievers, B; Lämmerzahl, C, High precision thermal modeling of complex systems with application to the flyby and pioneer anomaly, Ann. Phys. (Berlin), 523, 439-449, (2011) · Zbl 1220.83010
[340] Riis, E; Anderson, L-UA; Bjerre, N; Poulson, O; Lee, SA; Hall, JL, Test of the isotropy of the speed of light using fast-beam laser spectroscopy, Phys. Rev. Lett., 60, 81-84, (1988)
[341] Robertson, HP, The two-body problem in general relativity, Ann. Math., 39, 101-104, (1938) · Zbl 0018.28201
[342] Roll, PG; Krotkov, R; Dicke, RH, The equivalence of inertial and passive gravitational mass, Ann. Phys. (N.Y.), 26, 442-517, (1964) · Zbl 0124.44904
[343] Rossi, B; Hall, DB, Variation of the rate of decay of mesotrons with momentum, Phys. Rev., 59, 223-228, (1941)
[344] Rozelot, J-P; Damiani, C, History of solar oblateness measurements and interpretation, Eur. Phys. J. H, 36, 407-436, (2011)
[345] Ryan, FD, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments, Phys. Rev. D, 52, 5707-5718, (1995)
[346] Sagi, E, Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization, Phys. Rev. D, 80, 044032, (2009)
[347] Sampson, L; Yunes, N; Cornish, N, Rosetta stone for parametrized tests of gravity, Phys. Rev. D, 88, 064056, (2013)
[348] Samuel, S, On the speed of gravity and the v/c corrections to the Shapiro time delay, Phys. Rev. Lett., 90, 231101, (2003)
[349] Samuel, S, On the speed of gravity and the Jupiter/quasar measurement, Int. J. Mod. Phys. D, 13, 1753-1770, (2004) · Zbl 1065.83505
[350] Santiago, DI; Kalligas, D; Wagoner, RV, Nucleosynthesis constraints on scalar-tensor theories of gravity, Phys. Rev. D, 56, 7627-7637, (1997)
[351] Sasaki, M. and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6 (2003). [DOI], [ADS], [arXiv:gr-qc/0306120]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2003-6. (Cited on pages 55 and 62.) · Zbl 1070.83019
[352] Sathyaprakash, B. S. and Schutz, B. F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2 (2009). [DOI], [ADS], [arXiv:0903.0338 [gr-qc]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2009-2. (Cited on pages 59 and 79.) · Zbl 1166.85002
[353] Scharre, PD; Will, CM, Testing scalar-tensor gravity using space gravitational-wave interferometers, Phys. Rev. D, 65, 042002, (2002)
[354] Schlamminger, S; Choi, K-Y; Wagner, TA; Gundlach, JH; Adelberger, EG, Test of the equivalence principle using a rotating torsion balance, Phys. Rev. Lett., 100, 041101, (2008)
[355] Schutz, B. F., A First Course in General Relativity, (Cambridge University Press, Cambridge; New York, 2009), 2nd edition. [ADS], [Google Books]. (Cited on page 28.) · Zbl 1173.53002
[356] Shah, A. G, “Gravitational-wave flux for a particle orbiting a Kerr black hole to 20th post-Newtonian order: a numerical approach”, arXiv, e-print, (2014). [ADS], [arXiv:1403.2697]. (Cited on page 62.)
[357] Shankland, RS; McCuskey, SW; Leone, FC; Kuerti, G, New analysis of the interferometer observations of dayton C. Miller, Rev. Mod. Phys., 27, 167-178, (1955)
[358] Shao, L; Caballero, RN; Kramer, M; Wex, N; Champion, DJ; Jessner, A, A new limit on local Lorentz invariance violation of gravity from solitary pulsars, Class. Quantum Grav., 30, 165019, (2013)
[359] Shao, L; Wex, N, New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars, Class. Quantum Grav., 29, 215018, (2012) · Zbl 1266.83162
[360] Shao, L; Wex, N, New limits on the violation of local position invariance of gravity, Class. Quantum Grav., 30, 165020, (2013)
[361] Shapiro, II, A century of relativity, Rev. Mod. Phys., 71, s41-s53, (1999)
[362] Shapiro, II; Bartel, N; Bietenholz, MF; Lebach, DE; Lestrade, J-F; Ransom, RR; Ratner, MI, VLBI for gravity probe B. I. overview, Astrophys. J. Suppl. Ser., 201, 1, (2012)
[363] Shapiro, SS; Davis, JL; Lebach, DE; Gregory, JS, Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979-1999, Phys. Rev. Lett., 92, 121101, (2004)
[364] Shibata, M; Taniguchi, K; Okawa, H; Buonanno, A, Coalescence of binary neutron stars in a scalar-tensor theory of gravity, Phys. Rev. D, 89, 084005, (2014)
[365] Shlyakter, AI, Direct test of the constancy of fundamental nuclear constants, Nature, 264, 340, (1976)
[366] Skordis, C, Generalizing tensor-vector-scalar cosmology, Phys. Rev. D, 77, 123502, (2008)
[367] Skordis, C, The tensor-vector-scalar theory and its cosmology, Class. Quantum Grav., 26, 143001, (2009) · Zbl 1172.83300
[368] Smarr, L; Čadež, A; Dewitt, B; Eppley, K, Collision of two black holes: theoretical framework, Phys. Rev. D, 14, 2443-2452, (1976)
[369] Smiciklas, M; Brown, JM; Cheuk, LW; Smullin, SJ; Romalis, MV, New test of local Lorentz invariance using a \^{}{21}ne-rb-K comagnetometer, Phys. Rev. Lett., 107, 171604, (2011)
[370] Sotiriou, TP; Faraoni, V, \(f\)(\(R\)) theories of gravity, Rev. Mod. Phys., 82, 451-497, (2010) · Zbl 1205.83006
[371] Sotiriou, TP; Faraoni, V, Black holes in scalar-tensor gravity, Phys. Rev. Lett., 108, 081103, (2012)
[372] Speake, CC; Will, CM, Tests of the weak equivalence principle, Class. Quantum Grav., 29, 180301, (2012)
[373] Srianand, R; Chand, H; Petitjean, P; Aracil, B, Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Phys. Rev. Lett., 92, 121302, (2004)
[374] Stairs, I. H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6, lrr-2003-5 (2003). [DOI], [ADS], [arXiv:astro-ph/0307536]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2003-5. (Cited on pages 49 and 68.) · Zbl 1068.83504
[375] Stairs, IH; etal., Discovery of three wide-orbit binary pulsars: implications for binary evolution and equivalence principles, Astrophys. J., 632, 1060-1068, (2005)
[376] Stanwix, PL; Tobar, ME; Wolf, P; Susli, M; Locke, CR; Ivanov, EN; Winterflood, J; Kann, F, Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators, Phys. Rev. Lett., 95, 040404, (2005)
[377] Stavridis, A; Will, CM, Bounding the mass of the graviton with gravitational waves: effect of spin precessions in massive black hole binaries, Phys. Rev. D, 80, 044002, (2009)
[378] Stecker, FW; Scully, ST, Searching for new physics with ultrahigh energy cosmic rays, New J. Phys., 11, 085003, (2009)
[379] Su, Y; Heckel, BR; Adelberger, EG; Gundlach, JH; Harris, M; Smith, GL; Swanson, HE, New tests of the universality of free fall, Phys. Rev. D, 50, 3614-3636, (1994)
[380] Sushkov, AO; Kim, WJ; Dalvit, DAR; Lamoreaux, SK, New experimental limits on non-Newtonian forces in the micrometer range, Phys. Rev. Lett., 107, 171101, (2011)
[381] Talmadge, CL; Berthias, J-P; Hellings, RW; Standish, EM, Model-independent constraints on possible modifications of Newtonian gravity, Phys. Rev. Lett., 61, 1159-1162, (1988)
[382] Taveras, V; Yunes, N, Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?, Phys. Rev. D, 78, 064070, (2008)
[383] Taylor, JH; MacCallum, MAH (ed.), Astronomical and space experiments to test relativity, 209, (1987), Cambridge; New York
[384] Taylor, TR; Veneziano, G, Dilaton couplings at large distances, Phys. Lett. B, 213, 450-454, (1988)
[385] Taylor, JH, Nobel lecture: binary pulsars and relativistic gravity, Rev. Mod. Phys., 66, 711-719, (1994)
[386] Thorne, KS; Hawking, SW (ed.); Israel, W (ed.), Gravitational radiation, 330-458, (1987), Cambridge; New York · Zbl 0966.83515
[387] Thorne, KS; Dykla, JJ, Black holes in the Dicke-Brans theory of gravity, Astrophys. J. Lett., 166, l35-l38, (1971) · Zbl 1156.85322
[388] Tinto, M; Alves, MEDS, LISA sensitivities to gravitational waves from relativistic metric theories of gravity, Phys. Rev. D, 82, 122003, (2010)
[389] Treuhaft, RN; Lowe, ST, A measurement of planetary relativistic deflection, Astron. J., 102, 1879-1888, (1991)
[390] Tu, L-C; Guan, S-G; Luo, J; Shao, C-G; Liu, L-X, Null test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum, Phys. Rev. Lett., 98, 201101, (2007)
[391] Turneaure, JP; Will, CM; Farrell, BF; Mattison, EM; Vessot, RFC, Test of the principle of equivalence by a null gravitational redshift experiment, Phys. Rev. D, 27, 1705-1714, (1983)
[392] Turyshev, SG, Experimental tests of general relativity, Annu. Rev. Nucl. Part. Sci., 58, 207-248, (2008)
[393] Turyshev, SG; Shao, M; Jr, KL, Experimental design for the LATOR mission, Int. J. Mod. Phys. D, 13, 2035-2063, (2004) · Zbl 1065.83506
[394] Turyshev, SG; Shao, M; Jr, KL, The laser astrometric test of relativity mission, Class. Quantum Grav., 21, 2773-2799, (2004) · Zbl 1061.83505
[395] Turyshev, S. G. and Toth, V. T., “The Pioneer Anomaly”, Living Rev. Relativity, 13, lrr-2010-4 (2010). [DOI], [ADS], [arXiv:1001.3686 [gr-qc]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2010-4. (Cited on page 27.) · Zbl 1215.83011
[396] Turyshev, SG; Toth, VT; Kinsella, G; Lee, S-C; Lok, SM; Ellis, J, Support for the thermal origin of the pioneer anomaly, Phys. Rev. Lett., 108, 241101, (2012)
[397] Uzan, J.-P., “Varying Constants, Gravitation and Cosmology”, Living Rev. Relativity, 14, lrr-2011-2 (2011). [DOI], [ADS], [arXiv:1009.5514 [astro-ph.CO]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2011-2. (Cited on pages 18 and 19.) · Zbl 1215.83012
[398] Dam, H; Veltman, MJG, Massive and mass-less Yang-Mills and gravitational fields, Nucl. Phys. B, 22, 397-411, (1970)
[399] Verma, AK; Fienga, A; Laskar, J; Manche, H; Gastineau, M, Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity, Astron. Astrophys., 561, a115, (2014)
[400] Vessot, RFC; etal., Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., 45, 2081-2084, (1980)
[401] Visser, M, Mass for the graviton, Gen. Relativ. Gravit., 30, 1717-1728, (1998) · Zbl 1047.83526
[402] Wagner, TA; Schlamminger, S; Gundlach, JH; Adelberger, EG, Torsion-balance tests of the weak equivalence principle, Class. Quantum Grav., 29, 184002, (2012)
[403] Wagoner, RV; Marck, J-A (ed.); Lasota, J-P (ed.), Resonant-mass detection of tensor and scalar waves, Proceedings of the Les Houches School of Physics, Les Houches, Haute Savoie, 26 September-6 October, 1995, Cambridge
[404] Wagoner, RV; Kalligas, D; Marck, J-A (ed.); Lasota, J-P (ed.), Scalar-tensor theories and gravitational radiation, Proceedings of the Les Houches School of Physics, Les Houches, Haute Savoie, 26 September-6 October, 1995, Cambridge
[405] Wagoner, RV; Will, CM, Post-Newtonian gravitational radiation from orbiting point masses, Astrophys. J., 210, 764-775, (1976)
[406] Webb, JK; Flambaum, VV; Churchill, CW; Drinkwater, MJ; Barrow, JD, Search for time variation of the fine structure constant, Phys. Rev. Lett., 82, 884-887, (1999)
[407] Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (Wiley, New York, 1972). (Cited on page 28.)
[408] Weinberg, S, Effective field theory for inflation, Phys. Rev. D, 77, 123541, (2008)
[409] Weisberg, JM; Nice, DJ; Taylor, JH, Timing measurements of the relativistic binary pulsar PSRB1913+16, Astrophys. J., 722, 1030-1034, (2010)
[410] Weisberg, JM; Taylor, JH, General relativistic geodetic spin precession in binary pulsar B1913+16: mapping the emission beam in two dimensions, Astrophys. J., 576, 942-949, (2002)
[411] Wen, L; Schutz, BF, Coherent network detection of gravitational waves: the redundancy veto, Class. Quantum Grav., 22, s1321-s1336, (2005) · Zbl 1081.83520
[412] Wex, N., “Testing Relativistic Gravity with Radio Pulsars”, arXiv, e-print, (2014). [ADS], [arXiv:1402.5594 [gr-qc]]. (Cited on page 68.)
[413] Will, CM, Theoretical frameworks for testing relativistic gravity. II. parametrized post-Newtonian hydrodynamics, and the nordtvedt effect, Astrophys. J., 163, 611-628, (1971)
[414] Will, CM, Active mass in relativistic gravity: theoretical interpretation of the kreuzer experiment, Astrophys. J., 204, 224-234, (1976)
[415] Will, CM, Gravitational radiation from binary systems in alternative metric theories of gravity: dipole radiation and the binary pulsar, Astrophys. J., 214, 826-839, (1977)
[416] Will, CM, Henry cavendish, johann von soldner, and the deflection of light, Am. J. Phys., 56, 413-415, (1988)
[417] Will, CM, Twilight time for the fifth force?, Sky and Telescope, 80, 472-479, (1990)
[418] Will, CM, Clock synchronization and isotropy of the one-way speed of light, Phys. Rev. D, 45, 403-411, (1992)
[419] Will, CM, Is momentum conserved? A test in the binary system PSR 1913+16, Astrophys. J. Lett., 393, l59-l61, (1992)
[420] Will, C. M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [Google Books]. (Cited on pages 8, 10, 11, 15, 16, 18, 20, 22, 28, 31, 32, 34, 35, 36, 38, 42, 44, 45, 47, 48, 49, 51, 53, 54, 66, 69, 75, 76, 82, 83, 85, and 87.) · Zbl 0785.53068
[421] Will, C. M., Was Einstein Right?: Putting General Relativity to the Test, (Basic Books, New York, 1993), 2nd edition. (Cited on page 7.)
[422] Will, CM, Testing scalar-tensor gravity with gravitational-wave observations of inspiralling compact binaries, Phys. Rev. D, 50, 6058-6067, (1994)
[423] Will, CM, Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries, Phys. Rev. D, 57, 2061-2068, (1998)
[424] Will, C. M., “Einstein’s relativity and everyday life”, online resource, American Physical Society, (2000). URL (accessed 28 March 2014): http://www.physicscentral.com/writers/writers-00-2.html. (Cited on page 17.)
[425] Will, CM, Propagation speed of gravity and the relativistic time delay, Astrophys. J., 590, 683-690, (2003)
[426] Will, CM; Damour, T (ed.); Darrigol, O (ed.); Duplantier, B (ed.); Rivasseau, V (ed.), Special relativity: A centenary perspective, No. 47, 33-58, (2006), Basel; Boston; Berlin · Zbl 1099.83509
[427] Will, CM, Testing the general relativistic ‘no-hair’ theorems using the galactic center black hole sagittarius A*, Astrophys. J. Lett., 674, l25-l28, (2008)
[428] Will, CM, Resource letter PTG-1: precision tests of gravity, Am. J. Phys., 78, 1240-1247, (2010)
[429] Will, CM, Finally, results from gravity probe B, Physics, 4, 43, (2011)
[430] Will, CM, On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics, Proc. Natl. Acad. Sci. USA, 108, 5938-5945, (2011)
[431] Will, CM; Jr, KL, Conservation laws and preferred frames in relativistic gravity. I. preferred-frame theories and an extended PPN formalism, Astrophys. J., 177, 757-774, (1972)
[432] Will, CM; Wiseman, AG, Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order, Phys. Rev. D, 54, 4813-4848, (1996)
[433] Will, CM; Yunes, N, Testing alternative theories of gravity using LISA, Class. Quantum Grav., 21, 4367-4381, (2004) · Zbl 1059.83501
[434] Will, CM; Zaglauer, HW, Gravitational radiation, close binary systems, and the Brans-Dicke theory of gravity, Astrophys. J., 346, 366-377, (1989)
[435] Williams, JG; Newhall, XX; Dickey, JO, Relativity parameters determined from lunar laser ranging, Phys. Rev. D, 53, 6730-6739, (1996)
[436] Williams, JG; Turyshev, SG; Boggs, DH, Progress in lunar laser ranging tests of relativistic gravity, Phys. Rev. Lett., 93, 261101, (2004)
[437] Williams, JG; Turyshev, SG; Jr, TW, Improving LLR tests of gravitational theory, Int. J. Mod. Phys. D, 13, 567-582, (2004) · Zbl 1049.83509
[438] Wolf, P; Bize, S; Clairon, A; Luiten, AN; Santarelli, G; Tobar, ME, Tests of Lorentz invariance using a microwave resonator, Phys. Rev. Lett., 90, 060402, (2003) · Zbl 1063.83002
[439] Wolf, P; Blanchet, L; Bordé, CJ; Reynaud, S; Salomon, C; Cohen-Tannoudji, C, Does an atom interferometer test the gravitational redshift at the Compton frequency?, Class. Quantum Grav., 28, 145017, (2011) · Zbl 1225.83009
[440] Wolf, P; Chapelet, F; Bize, S; Clairon, A, Cold atom clock test of Lorentz invariance in the matter sector, Phys. Rev. Lett., 96, 060801, (2006)
[441] Wolfe, AM; Brown, RL; Roberts, MS, Limits on the variation of fundamental atomic quantities over cosmic time scales, Phys. Rev. Lett., 37, 179-181, (1976)
[442] Yagi, K; Blas, D; Barausse, E; Yunes, N, Constraints on Einstein-æther theory and Hořava gravity from binary pulsar observations, Phys. Rev. D, 89, 084067, (2014)
[443] Yagi, K; Blas, D; Yunes, N; Barausse, E, Strong binary pulsar constraints on Lorentz violation in gravity, Phys. Rev. Lett., 112, 161101, (2014)
[444] Yagi, K; Stein, LC; Yunes, N; Tanaka, T, Isolated and binary neutron stars in dynamical Chern-Simons gravity, Phys. Rev. D, 87, 084058, (2013)
[445] Yagi, K; Tanaka, T, Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA, Phys. Rev. D, 81, 064008, (2010)
[446] Yagi, K; Tanaka, T, DECIGO/BBO as a probe to constrain alternative theories of gravity, Prog. Theor. Phys., 123, 1069-1078, (2010)
[447] Yagi, K; Yunes, N, I-love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics, Phys. Rev. D, 88, 023009, (2013)
[448] Yagi, K; Yunes, N, I-love-Q: unexpected universal relations for neutron stars and quark stars, Science, 341, 365-368, (2013)
[449] Yang, S-Q; Zhan, B-F; Wang, Q-L; Shao, C-G; Tu, L-C; Tan, W-H; Luo, J, Test of the gravitational inverse square law at millimeter ranges, Phys. Rev. Lett., 108, 081101, (2012)
[450] Yunes, N; Pani, P; Cardoso, V, Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories, Phys. Rev. D, 85, 102003, (2012)
[451] Yunes, N; Pretorius, F, Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework, Phys. Rev. D, 80, 122003, (2009)
[452] Yunes, N. and Siemens, X., “Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays”, Living Rev. Relativity, 16, lrr-2013-9 (2013). [DOI], [ADS], [arXiv:1304.3473 [gr-qc]]. URL (accessed 28 March 2014): http://www.livingreviews.org/lrr-2013-9. (Cited on page 79.)
[453] Zakharov, VI, Linearized gravitation theory and the graviton mass, JETP Lett., 12, 312, (1970)
[454] Zuntz, J; Baker, T; Ferreira, PG; Skordis, C, Ambiguous tests of general relativity on cosmological scales, J. Cosmol. Astropart. Phys., 6, 032, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.