×

Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. (English) Zbl 1317.35262

Summary: In an earlier work we have shown the global (for all initial data and all time) well-posedness of strong solutions to the three-dimensional viscous primitive equations of large scale oceanic and atmospheric dynamics. In this paper we show that for certain class of initial data the corresponding smooth solutions of the inviscid (non-viscous) primitive equations, if they exist, they blow up in finite time. Specifically, we consider the three-dimensional inviscid primitive equations in a three-dimensional infinite horizontal channel, subject to periodic boundary conditions in the horizontal directions, and with no-normal flow boundary conditions on the solid, top and bottom boundaries. For certain class of initial data we reduce this system into the two-dimensional system of primitive equations in an infinite horizontal strip with the same type of boundary conditions; and then we show that for specific sub-class of initial data the corresponding smooth solutions of the reduced inviscid two-dimensional system develop singularities in finite time.

MSC:

35Q86 PDEs in connection with geophysics
86A05 Hydrology, hydrography, oceanography
35B44 Blow-up in context of PDEs
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Babin A., Ilyin A.A., Titi E.S.: On the regularization mechanism for the spatially periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64, 591-648 (2011) · Zbl 1284.35365 · doi:10.1002/cpa.20356
[2] Babin A., Mahalov A., Nicolaenko B.: Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal. 15(2), 103-150 (1997) · Zbl 0890.35109
[3] Babin A., Mahalov A., Nicolaenko B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3), 1133-1176 (1999) · Zbl 0932.35160
[4] Babin A., Mahalov A., Nicolaenko B.: On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math. Models Methods Appl. Sci. 9(7), 1089-1121 (1999) · Zbl 1035.76055 · doi:10.1142/S021820259900049X
[5] Babin A., Mahalov A., Nicolaenko B.: Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics. Math. Model. Numer. Anal. 34, 201-222 (2000) · Zbl 0962.76020 · doi:10.1051/m2an:2000138
[6] Brenier Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127(7), 585-595 (2003) · Zbl 1040.35068 · doi:10.1016/S0007-4497(03)00024-1
[7] Cao, C., Li, J., Titi, E.S.: Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch. Anal. Ration. Mech. (in press) · Zbl 1305.35113
[8] Cao C., Li J., Titi E.S.: Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity. J. Differ. Equ. 257, 4108-4132 (2014) · Zbl 1300.35089 · doi:10.1016/j.jde.2014.08.003
[9] Cao, C., Li, J., Titi, E.S.: Global well-posedness for the 3D primitive equations with only horizontal viscosity and diffusion. Commun. Pure Appl. Math. (to appear) · Zbl 1351.35125
[10] Cao C., Titi E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245-267 (2007) · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[11] Cao C., Titi E.S.: Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion. Commun. Math. Phys. 310, 537-568 (2012) · Zbl 1267.35157 · doi:10.1007/s00220-011-1409-4
[12] Chemin J.-Y., Desjardines B., Gallagher I., Grenier E.: Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford Lecture Series in Mathematics and Its Applications, vol. 32. Clarendon Press, Oxford (2006) · Zbl 1205.86001
[13] Childress S., Ierley G.R., Spiegel E.A., Young W.R.: Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form. J. Fluid Mech. 203, 1-22 (1989) · Zbl 0674.76013 · doi:10.1017/S0022112089001357
[14] E,W., Engquist, B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50, 1287-1293 (1997) · Zbl 0908.35099
[15] Embid P.F., Majda A.J.: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Commun. Partial Differ. Equ. 21, 619-658 (1996) · Zbl 0849.35106 · doi:10.1080/03605309608821200
[16] Gargett A.E.: Vertical eddy diffusivity in the ocean interior. J. Mar. Res. 42, 359-393 (1984) · doi:10.1357/002224084788502756
[17] Garrett C.J.R.: Oceanography: a stirring tale of mixing. Nature 364, 670-671 (1993) · doi:10.1038/364670a0
[18] Ibrahim, S., Nakanishi, K., Titi, E.S.: Global regularity vs. blowup dicohotomy for one-dimensional models arising from fluid dynamcis (preprint) · Zbl 1267.35157
[19] Kukavica I., Temam R., Vicol V.C., Ziane M.: Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differ. Equ. 250(3), 1719-1746 (2011) · Zbl 1204.35129 · doi:10.1016/j.jde.2010.07.032
[20] Kukavica I., Ziane M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20, 2739-2753 (2007) · Zbl 1136.35069 · doi:10.1088/0951-7715/20/12/001
[21] Liu H., Tamdor E.: Rotation prevents finite-time breakdown. Phys. D 188, 262-276 (2004) · Zbl 1098.76643 · doi:10.1016/j.physd.2003.07.006
[22] Majda A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Institute Lecture Notes, vol. 9. American Mathematical Society, Providence (2003) · Zbl 1278.76004
[23] Masmoudi N., Kwong Wong T.: On the Hs theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204, 231-271 (2012) · Zbl 1317.76017 · doi:10.1007/s00205-011-0485-0
[24] Okamoto H.: Well-posedness of the generalized Proudman-Johnson equation without viscosity. J. Math. Fluid Mech. 11, 46-59 (2009) · Zbl 1162.76311 · doi:10.1007/s00021-007-0247-9
[25] Okamoto H., Zhu J.: Some similarity solutions of the Navier-Stokes equations and related topics. Taiwan. J. Math. 4(1), 65-103 (2000) · Zbl 0972.35090
[26] Pedlosky J.: Geophysical Fluid Dynamics. Springer, New York (1987) · Zbl 0713.76005 · doi:10.1007/978-1-4612-4650-3
[27] Renardy M.: Ill-posedness of the hydrostatic Euler and Navier-Stokes equations. Arch. Ration. Mech. Anal. 194(3), 877-886 (2009) · Zbl 1292.76011 · doi:10.1007/s00205-008-0207-4
[28] Salmon R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.