High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. (English) Zbl 1317.65198


65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R11 Fractional partial differential equations
65T50 Numerical methods for discrete and fast Fourier transforms


splib; FODE
Full Text: DOI arXiv


[1] B. Baeumera and M. M. Meerschaert, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math., 233 (2010), pp. 2438–2448. · Zbl 1423.60079
[2] E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), pp. 132–138.
[3] S. Carmi, L. Turgeman, and E. Barkai, On distributions of functionals of anomalous diffusion paths, J. Stat. Phys., 141 (2010), pp. 1071–1092. · Zbl 1205.82079
[4] S. Carmi and E. Barkai, Fractional Feynman-Kac equation for weak ergodicity breaking, Phys. Rev. E, 84 (2011), 061104. · Zbl 1315.60087
[5] Á. Cartea and D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105.
[6] M. H. Chen, W. H. Deng, and Y. J. Wu, Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. Math., 70 (2013), pp. 22–41. · Zbl 1283.65082
[7] M. H. Chen, Y. T. Wang, X. Cheng, and W. H. Deng, Second-order LOD multigrid method for multidimensional Riesz fractional diffusion equation, BIT Numer. Math., 54 (2014), pp. 623–647. · Zbl 1301.35200
[8] M. H. Chen and W. H. Deng, Fourth order difference approximations for space Riemann-Liouville derivatives based on weighted and shifted Lubich difference operators, Commun. Comput. Phys., 16 (2014), pp. 516–540. · Zbl 1388.65130
[9] M. H. Chen and W. H. Deng, Fourth order accurate scheme for the space fractional diffusion equations, SIAM J. Numer. Anal., 52 (2014), pp. 1418–1438. · Zbl 1318.65048
[10] M. H. Chen and W. H. Deng, Discretized fractional substantial calculus, ESAIM Math. Model. Numer. Anal. (M2AN), 49 (2015), pp. 373–394. · Zbl 1314.26007
[11] S. Chen, F. Liu, P. Zhuang, and V. Anh, Finite difference approximation for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), pp. 256–273. · Zbl 1167.65419
[12] D. del-Castillo-Negrete, Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 79 (2009), 031120.
[13] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204–226. · Zbl 1416.65344
[14] W. H. Deng, M. H. Chen, and E. Barkai, Numerical algorithms for the forward and backward fractional Feynman-Kac equations, J. Sci. Comput., 62 (2015), pp. 718–746. · Zbl 1335.65069
[15] R. Friedrich, F. Jenko, A. Baule, and S. Eule, Anomalous dfffusion of inertial, weakly damped particles, Phys. Rev. Lett., 96 (2006), 230601.
[16] D. Funaro, Fortran Routines for Spectral Methods, Report 891, IAN-CNR, Pavia, Italy 1993.
[17] E. Hanert and C. Piret, A Chebyshev pseudo-spectral method to solve the space-time tempered fractional diffusion equation, SIAM J. Sci. Comput., 36 (2014), pp. A1797–A1812. · Zbl 1302.35403
[18] B. Gustafsson, High Order Difference Methods for Time Dependent PDE, Springer-Verlag, Berlin, 2008. · Zbl 1146.65064
[19] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer, New York, 2007. · Zbl 1134.65068
[20] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Wiley, New York 1966. · Zbl 0168.13101
[21] I. Koponen, Analytic approach to the problem of converence of truncatd Lévy flights towards the Gaussian stochastic process, Phys. Rev. E, 52 (1995), pp. 1197–1195.
[22] C. Li and W. H. Deng, High Order Schemes for the Tempered Fractional Diffusion Equaitons, arXiv:1402.0064, 2014.
[23] X. J. Li and C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108–2131. · Zbl 1193.35243
[24] Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704–719. · Zbl 0624.65015
[25] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), pp. 65–77. · Zbl 1126.76346
[26] R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), pp. 3653–3567.
[27] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York, 1993. · Zbl 0789.26002
[28] H. Pang and H. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), pp. 693–703. · Zbl 1243.65117
[29] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. · Zbl 0924.34008
[30] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, 2nd ed., Springer, New York, 2007. · Zbl 1136.65001
[31] F. Sabzikar, M. M. Meerschaert, and J. H. Chen, Tempered fractional calculus, J. Comput. Phys., doi: 10.1016/j.jcp.2014.04.024 (2014). · Zbl 1349.26017
[32] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed., California Technical Publishing, San Diego, 1999.
[33] W. Y. Tian, H. Zhou, and W. H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., doi: 10.1090/S0025-5718-2015-02917-2 (2015). · Zbl 1318.65058
[34] L. Turgeman, S. Carmi, and E. Barkai, Fractional Feynman-Kac equation for non-Brownian functionals, Phys. Rev. Lett., 103 (2009), 190201.
[35] Q. Yang, I. Turner, F. Liu, and M. ILIĆ, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), pp. 1159–1180. · Zbl 1229.35315
[36] F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approximations for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), pp. 2976–3000.
[37] Y. N. Zhang, Z. Z. Sun, and X. Zhao, Compact ADI schemes for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50 (2012), pp. 1535–1555. · Zbl 1251.65126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.