×

zbMATH — the first resource for mathematics

Mixed generalized multiscale finite element methods and applications. (English) Zbl 1317.65204

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] J. E. Aarnes, On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model. Simul., 2 (2004), pp. 421–439. · Zbl 1181.76125
[2] T. Arbogast, Numerical subgrid upscaling of two-phase flow in porous media, in Numerical Treatment of Multiphase Flows in Porous Media, Lecture Notes in Phys. 552, Z. Chen et al., eds., Springer, Berlin, 2000, pp. 35–49. · Zbl 1072.76560
[3] T. Arbogast, Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow, Comput. Geosci., 6 (2002), pp. 453–481. · Zbl 1094.76532
[4] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), pp. 319–346. · Zbl 1322.76039
[5] I. Babuška and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems, Multiscale Model. Simul., 9 (2011), pp. 373–406. · Zbl 1229.65195
[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[7] V. Calo, Y. Efendiev, J. Galvis, and G. Li, Randomized Oversampling for Generalized Multiscale Finite Element Methods, preprint, http://arxiv.org/abs/1409.7114arxiv.org/abs/1409.7114, 2014. · Zbl 1337.65148
[8] Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp., 72 (2003), pp. 541–576. · Zbl 1017.65088
[9] E. Chung, Y. Efendiev, and G. Li, An adaptive GMsFEM for high contrast flow problems, J. Comput. Phys., 273 (2014), pp. 54–76. · Zbl 1354.65242
[10] E. T. Chung and Y. Efendiev, Reduced-contrast approximations for high-contrast multiscale flow problems, Multiscale Model. Simul., 8 (2010), pp. 1128–1153. · Zbl 1211.35073
[11] E. T. Chung, Y. Efendiev, and R. L. Gibson, An energy-conserving discontinuous multiscale finite element method for the wave equation in heterogeneous media, Adv. Adapt. Data Anal., 3 (2011), pp. 251–268. · Zbl 1263.74048
[12] E. T. Chung, Y. Efendiev, and W. T. Leung, Generalized multiscale finite element method for wave propagation in heterogeneous media, Multiscale Model. Simul., 12 (2014), pp. 1691–1721. · Zbl 1315.65085
[13] E. T. Chung and W. T. Leung, A sub-grid structure enhanced discontinuous Galerkin method for multiscale diffusion and convection-diffusion problems, Comm. Comput. Phys., 14 (2013), pp. 370–392. · Zbl 1373.76080
[14] L. J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27 (1991), pp. 699–708.
[15] Y. Efendiev and J. Galvis, A domain decomposition preconditioner for multiscale high-contrast problems, in Domain Decomposition Methods in Science and Engineering XIX, Lect. Notes Comput. Sci. Eng. 78, Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, eds., Springer-Verlag, Heidelberg, 2011, pp. 189–196. · Zbl 1217.65221
[16] Y. Efendiev, J. Galvis, and T. Hou, Generalized multiscale finite element methods, J. Comput. Phys., 251 (2013), pp. 116–135. · Zbl 1349.65617
[17] Y. Efendiev, J. Galvis, G. Li, and M. Presho, Generalized multiscale finite element methods: Oversampling strategies, Internat. J. Multiscale Comput. Engrg., 12 (2015), pp. 465–484.
[18] Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications, Surv. Tutor. Appl. Math. Sci. 4, Springer, New York, 2009. · Zbl 1163.65080
[19] Y. R. Efendiev, T. Y. Hou, and X.-H. Wu, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37 (2000), pp. 888–910. · Zbl 0951.65105
[20] R. L. Gibson, K. Gao, E. Chung, and Y. Efendiev, Multiscale modeling of acoustic wave propagation in two-dimensional media, Geophysics, 79 (2014), pp. T61–T75.
[21] T. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), pp. 169–189. · Zbl 0880.73065
[22] P. Jenny, S. H. Lee, and H. Tchelepi, Multi-scale finite volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187 (2003), pp. 47–67. · Zbl 1047.76538
[23] K.-A. Lie, J. Natvig, S. Krogstad, Y. Yang, and X.-H. Wu, Grid adaptation for the Dirichlet Neumann representation method and the multiscale mixed finite-element method, Comput. Geosci., 18 (2014), pp. 357–372. · Zbl 1386.76101
[24] X.-H. Wu, Y. Efendiev, and T. Y. Hou, Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), pp. 158–204. · Zbl 1162.65327
[25] Y. Yang, D. Li, R. Parashkevov, and X.-H. Wu, A Dirichlet Neumann representation method for simulating flows in reservoirs, in 2011 SPE Reservoir Simulation Symposium, The Woodlands, TX, 2011.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.