×

Finite element static and stability analysis of gradient elastic beam structures. (English) Zbl 1317.74087

Summary: In this paper, the static and stability stiffness matrices of a gradient elastic flexural Bernoulli-Euler beam finite element are analytically constructed with the aid of the basic and governing equations of equilibrium for that element. The flexural element has one node at every end with three degrees of freedom per node, i.e., the displacement, the slope and the curvature. The stability stiffness matrix incorporates the effect of axial compressive force on bending. Use of these stiffness matrices for a plane system of beams enables one through a finite element analysis to determine its response to static loading and its buckling load. Because the exact solution of the governing equation of the problem is used as the displacement function, the resulting stiffness matrices and the obtained structural responses are also exact. Examples are presented to illustrate the method and demonstrate its merits.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74B99 Elastic materials

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Senturia S.D.: Microsystem Design. Kluwer Academic Publishers, Boston (2001)
[2] Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[3] Exadaktylos G.E., Vardoulakis I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335, 81-109 (2001) · doi:10.1016/S0040-1951(01)00047-6
[4] Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962-1990 (2011) · doi:10.1016/j.ijsolstr.2011.03.006
[5] Tsinopoulos S.V., Polyzos D., Beskos D.E.: Static and dynamic BEM analysis of strain gradient elastic solids and structures. Comput. Model. Eng. Sci. (CMES) 86, 113-144 (2012) · Zbl 1356.74244
[6] Papargyri-Beskou S., Beskos D.E.: Static analysis of gradient elastic bars, beams, plates and shells. Open Mech. J. 4, 65-73 (2010) · Zbl 1196.74093
[7] Vardoulakis I., Exadaktylos G., Kourkoulis S.K.: Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. J. Phys. IV 8, 399-406 (1998)
[8] Georgiadis H.G., Anagnostou D.S.: Problems of Flamant-Boussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71-98 (2008) · Zbl 1180.74007 · doi:10.1007/s10659-007-9129-x
[9] Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625-635 (2008) · Zbl 1239.74047 · doi:10.1007/s00419-007-0166-5
[10] Papargyri-Beskou S., Polyzos D., Beskos D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751-3759 (2009) · Zbl 1176.74101 · doi:10.1016/j.ijsolstr.2009.05.002
[11] Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385-400 (2003) · Zbl 1022.74010 · doi:10.1016/S0020-7683(02)00522-X
[12] Papargyri-Beskou S., Polyzos D., Beskos D.E.: Dynamic analysis of gradient elastic flexural beams. Struct. Eng. Mech. 15, 705-716 (2003) · Zbl 1022.74010 · doi:10.12989/sem.2003.15.6.705
[13] Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[14] Giannakopoulos A.E., Stamoulis K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440-3451 (2007) · Zbl 1121.74393 · doi:10.1016/j.ijsolstr.2006.09.033
[15] Kong S., Zhou S., Nie Z., Wang K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487-498 (2009) · Zbl 1213.74190 · doi:10.1016/j.ijengsci.2008.08.008
[16] Wang B., Zhao J., Zhou S.: A microscale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591-599 (2010) · Zbl 1480.74194 · doi:10.1016/j.euromechsol.2009.12.005
[17] Akgoz B., Civalek O.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1-14 (2013) · Zbl 1423.74452 · doi:10.1016/j.ijengsci.2013.04.004
[18] Triantafyllou A., Giannakopoulos A.E.: Structural analysis using a dipolar elastic Timoshenko beam. Eur. J. Mech. A/Solids 39, 218-228 (2013) · Zbl 1348.74202 · doi:10.1016/j.euromechsol.2012.11.011
[19] Martin H.C.: Introduction to Matrix Methods of Structural Analysis. McGraw-Hill, New York (1966)
[20] Artan R., Batra R.C.: Free vibrations of a strain gradient beam by the method of initial values. Acta Mech. 223, 2393-2409 (2012) · Zbl 1307.74040 · doi:10.1007/s00707-012-0709-x
[21] Artan R., Toksoz A.: Stability analysis of gradient elastic beams by the method of initial value. Arch. Appl. Mech. 83, 1129-1144 (2013) · doi:10.1007/s00419-013-0739-4
[22] Asiminas, E.L., Koumousis, V.K.: A beam finite element based on gradient elasticity. In: Beskos, D.E., Stavroulakis, G.E. (eds.) Proceedings of 10th HSTAM International Congress on Mechanics. Technical University of Crete Press, 25-27 May 2013, Chania, Crete, Greece, paper no 123
[23] Mathematica, Version 4.1, Wolfram Research Inc., Champaign, IL, USA (2004)
[24] Papargyri-Beskou, S., Tsinopoulos, S.V.: Lame’s strain potential method for plane gradient elasticity problems. Arch. Appl. Mech. (to appear) · Zbl 1341.74022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.