Nonlocal systems of conservation laws in several space dimensions. (English) Zbl 1318.65046


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI Link


[1] D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), pp. 105–131. · Zbl 1248.35118
[2] L. Ambrosio, F. Bouchut, and C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Partial Differential Equations, 29 (2004), pp. 1635–1651. · Zbl 1072.35116
[3] P. Amorim, R. M. Colombo, and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM M2AN, 49 (2015), pp. 19–37. · Zbl 1317.65165
[4] F. Betancourt, R. Bürger, K. H. Karlsen, and E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), pp. 855–885. · Zbl 1381.76368
[5] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., to appear. · Zbl 1336.65130
[6] R. Borsche, R. M. Colombo, M. Garavello, and A. Meurer, Differential equations modeling crowd interactions, J. Nonlinear Sci., to appear. · Zbl 1327.35244
[7] A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000.
[8] C. Chainais-Hillairet, Finite volume schemes for a hyperbolic equation. Convergence towards the entropy solution and error estimate, ESAIM M2AN, 33 (1999), pp. 129–156. · Zbl 0921.65071
[9] C. Chainais-Hillairet and S. Champier, Finite volume schemes for nonhomogeneous scalar conservation laws: Error estimate, Numer. Math., 88 (2001), pp. 607–639. · Zbl 1002.65105
[10] R. M. Colombo, M. Garavello, and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023. · Zbl 1248.35213
[11] R. M. Colombo, M. Herty, and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 353–379. · Zbl 1232.35176
[12] R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), pp. 177–196. · Zbl 1265.35214
[13] M. G. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), pp. 285–314. · Zbl 0438.65076
[14] M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), pp. 1–21. · Zbl 0423.65052
[15] S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), pp. 3295–3313. · Zbl 06991582
[16] K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, ESAIM M2AN, 35 (2001), pp. 239–269. · Zbl 1032.76048
[17] B. L. Keyfitz and H. C. Kranzer, A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Ration. Mech. Anal., 72 (1979/80), pp. 219–241. · Zbl 0434.73019
[18] U. Koley and N. H. Risebro, Finite difference schemes for the symmetric Keyfitz–Kranzer system, Z. Angew. Math. Phys., 64 (2013), pp. 1057–1085. · Zbl 1277.65070
[19] S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (123) (1970), pp. 228–255.
[20] N. N. Kuznecov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation, Ž. Vyčisl. Mat. i Mat. Fiz., 16 (1976), pp. 1489–1502, 1627 (in Russian).
[21] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, UK, 2002.
[22] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. · Zbl 1185.92006
[23] R. Sanders, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp., 40 (1983), pp. 91–106. · Zbl 0533.65061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.