Forecasting mortality in subpopulations using Lee-Carter type models: a comparison. (English) Zbl 1318.91109

Summary: The relative performance of multipopulation stochastic mortality models is investigated. When targeting mortality rates, we consider five extensions of the well known Lee-Carter single population extrapolative approach. As an alternative, we consider similar structures when mortality improvement rates are targeted. We use a dataset of deaths and exposures of Italian regions for the years 1974–2008 to conduct a comparison of the models, running a battery of tests to assess the relative goodness of fit and forecasting capability of different approaches. Results show that the preferable models are those striking a balance between complexity and flexibility.


91B30 Risk theory, insurance (MSC2010)
91B70 Stochastic models in economics
91D20 Mathematical geography and demography
Full Text: DOI


[1] Baxter, S. D., Should projections of mortality improvements be subject to a minimum value?, Br. Actuar. J., 13, 375-464, (2007)
[2] Booth, H.; Hyndman, R. J.; Tickle, L.; de Jong, P., Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions models, Demogr. Res., 15, 9, 289-310, (2006)
[3] Booth, H.; Maindonald, J.; Smith, L., Applying Lee-Carter under conditions of variable mortality decline, Popul. Stud., 56, 3, 325-336, (2002)
[4] Brouhns, N.; Denuit, M.; Vermunt, J., A Poisson log-bilinear approach to the construction of projected lifetables, Insurance Math. Econom., 31, 3, 373-393, (2002) · Zbl 1074.62524
[5] Burnham, P.; Anderson, R., Multimodel inference: understanding AIC and BIC in model selection, Sociol. Methods Res., 33, 2, 261-304, (2004)
[6] Cairns, A.; Blake, D.; Dowd, K.; Coughlan, D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england & wales and the united states, N. Am. Actuar. J., 13, 1, 1-35, (2009)
[7] Coughlan, G.; Khalaf-Allah, M.; Ye, Y.; Kumar, S.; Cairns, A.; Blake, D.; Dowd, K., Longevity hedging 101: a framework for longevity basis risk analysis and hedge effectiveness, N. Am. Actuar. J., 15, 2, 150-176, (2011)
[8] De Jong, P.; Tickle, L., Extending Lee-Carter mortality forecasting, Math. Popul. Stud., 13, 1, 1-18, (2006) · Zbl 1151.91742
[9] Delwarde, A.; Denuit, M.; Guillen, M.; Vidiella, A., Application of the Poisson log-bilinear projection model to the G5 mortality experience, Belg. Actuar. Bull., 6, 1, 54-68, (2006) · Zbl 1356.91056
[10] Dowd, K.; Cairns, A.; Blake, D.; Coughlan, G.; Khalaf-Allah, M., A gravity model of mortality rates for two related populations, N. Am. Actuar. J., 15, 2, 334-356, (2011) · Zbl 1228.91032
[11] Haberman, S.; Renshaw, A., A comparative study of parametric mortality projection models, Insurance Math. Econom., 48, 1, 35-55, (2011)
[12] Haberman, S.; Renshaw, A., Parametric mortality improvement rate modelling and projecting, Insurance Math. Econom., 50, 3, 309-333, (2012) · Zbl 1237.91129
[13] Hunt, A., Blake, D., 2014. Identifiability in age/period mortality models.
[14] Hyndman, R. J.; Ullah, M. S., Robust forecasting of mortality and fertility rates: a functional data approach, Comput. Statist. Data Anal., 51, 10, 4942-4956, (2007) · Zbl 1162.62434
[15] Jarner, S. F.; Kryger, E. M., Modelling adult mortality in small populations: the SAINT model, ASTIN Bull., 41, 2, 377-418, (2011) · Zbl 1239.91128
[16] Lee, R. D.; Carter, L., Modelling and forecasting US mortality, J. Amer. Statist. Assoc., 87, 14, 659-675, (1992) · Zbl 1351.62186
[17] Li, J.; Hardy, M., Measuring basis risk in longevity hedges, N. Am. Actuar. J., 15, 2, 177-200, (2011) · Zbl 1228.91042
[18] Li, N.; Lee, R. D., Coherent mortality forecasts for a group of populations: an extension of the le-Carter method, Demography, 42, 3, 575-594, (2005)
[19] Minelli, G., Manno, V., D’Ottavi, S.M., Masocco, M., Rago, G., Vichi, M., Frova, L., Marchetti, S., Demaria, M., Conti, S., 2012. La mortalità in Italia nell’anno 2009, Rapporti ISTISAN (12/15).
[20] Mitchell, D.; Brockett, P.; Mendoza-Arriaga, R.; Muthuraman, K., Modeling and forecasting mortality rates, Insurance Math. Econom., 52, 2, 275-285, (2013) · Zbl 1284.91259
[21] Pitacco, E.; Denuit, M.; Haberman, S.; Olivieri, A., Modelling longevity dynamics for pensions and annnuity business, (2009), Oxford University Press · Zbl 1163.91005
[22] Renshaw, A.; Haberman, S., Lee-Carter mortality forecasting with age-specific enhancement, Insurance Math. Econom., 33, 2, 255-272, (2003) · Zbl 1103.91371
[23] Richards, S. J.; Kirkby, J. G.; Currie, I. D., The importance of year of birth in two-dimensional mortality data, Br. Actuar. J., 12, 1, 5-61, (2005)
[24] Russolillo, M.; Giordano, G.; Haberman, S., Extending the Lee-Carter model: a three-way decomposition, Scand. Actuar. J., 2011, 2, 96-117, (2011) · Zbl 1277.62260
[25] Villegas, A.; Haberman, S., On the modelling and forecasting of socio-economic mortality differentials: an application to deprivation and mortality in england, N. Am. Actuar. J., 18, 1, 168-193, (2014) · Zbl 1412.91057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.