Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk. (English) Zbl 1318.91126

Summary: Where mortality projection is concerned, it is essential to quantify the extent of the prediction error. This is especially important in light of the aggravating risk of longevity and as a result the increasing demand for longevity-linked products. In the literature so far, only parameter error and process error have been considered jointly while the issue of model error has yet been systematically studied. In this paper, we propose a method to account for process error, parameter error and model error in an integrated manner by modifying the semi-parametric bootstrapping technique. We apply the method to two data sets from the Continuous Mortality Investigation (CMI) and use the simulated scenarios to price the \(q\)-forward contracts via the maximum entropy approach. We find that model selection has a significant impact on the risk-neutral valuation results and thus it is crucial to incorporate model error in mortality projection.


91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
91D20 Mathematical geography and demography


Human Mortality
Full Text: DOI


[1] Bray, I., Application of Markov chain Monte Carlo methods to projecting cancer incidence and mortality, J. R. Stat. Soc. Ser. C. Appl. Stat., 51, 2, 151-164, (2002) · Zbl 1111.62331
[2] Brouhns, N.; Denuit, M.; Keilegom, I. V., Bootstrapping the Poisson log-bilinear model for mortality forecasting, Scand. Actuar. J., 31, 212-224, (2005) · Zbl 1092.91038
[3] Brouhns, N.; Denuit, M.; Vermunt, J. K., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance Math. Econom., 31, 373-393, (2002) · Zbl 1074.62524
[4] Brouhns, N.; Denuit, M.; Vermunt, J. K., Measuring the longevity risk in mortality projections, Bull. Swiss Assoc. Actuar., 105-130, (2002) · Zbl 1187.62158
[5] Cairns, A. J.G., A discussion of parameter and model uncertainty in insurance, Insurance Math. Econom., 27, 3, 313-330, (2000) · Zbl 0971.62063
[6] Cairns, A. J.G., Mortality seminar series: exploring the future; defining the questions abstract of the London discussion, Br. Actuar. J., 19, 3, 650-691, (2014)
[7] Cairns, A. J.G.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insur., 73, 687-718, (2006)
[8] Cairns, A. J.G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Khalaf-Allah, M., Mortality density forecasts: an analysis of six stochastic mortality models, Insurance Math. Econom., 48, 355-367, (2011)
[9] Cairns, A. J.G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england and wales and the united states, N. Am. Actuar. J., 13, 1-35, (2009)
[10] Chan, W.-S.; Li, J. S.-H.; Li, J., The CBD mortality indexes: modeling and applications, N. Am. Actuar. J., 18, 1, 38-58, (2014) · Zbl 1412.91037
[11] Chen, H.; Cox, S. H.; Wang, S. S., Is the home equity conversion program in the united states sustainable? evidence from pricing mortgage insurance premiums and non-recourse provisions using the conditional esscher transform, Insurance Math. Econom., 46, 2, 371-384, (2010) · Zbl 1231.91154
[12] Chernick, M. R., Bootstrap methods: A practitioner’s guide, 1-22, (1999), Wiley New York · Zbl 0932.62035
[13] Coughlan, G.D., Epstein, D., Sinha, A., Honig, P., 2007. \(q\)-forwards: derivatives for transferring longevity and mortality risk. JPMorgan Pension Advisory Group.
[14] Currie, I.D., 2006. Smoothing and forecasting mortality rates with P-splines. Talk given at Institute of Actuaries, June 2006.
[15] Currie, I. D.; Durban, M.; Eiler, P. H.C., Smoothing and forecasting mortality rates, Stat. Model., 4, 4, 279-298, (2004) · Zbl 1061.62171
[16] Czado, C.; Delwarde, A.; Denuit, M., Bayesian Poisson log-bilinear mortality projections, Insurance Math. Econom., 36, 260-284, (2005) · Zbl 1110.62142
[17] Denuit, M., 2009. Dynamic life tables: construction and applications. In: Keynote Lecture in the International Association of Actuaries Life Colloquium, Munich, Germany.
[18] Dowd, Backtesting stochastic mortality models: an ex post evaluation of multiperiod ahead density forecast, N. Am. Actuar. J., 14, 3, 281-298, (2010)
[19] Human Mortality Database, University of California, Berkeley (USA) and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org (data downloaded on 15 July 2013).
[20] Kogure, A.; Kitsukawa, K; Kurachi, Y., A Bayesian comparison of models for changing mortality towards evaluating the longevity risk in Japan, Asia Pac. J. Risk Insur., 3, 1-22, (2009)
[21] Kogure, A.; Kurachi, Y., A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions, Insurance Math. Econom., 46, 162-172, (2010) · Zbl 1231.91438
[22] Kogure, A.; Li, J.; Kamiya, S., A Bayesian multivariate risk-neutral method for pricing reverse mortgages, N. Am. Actuar. J., 18, 1, 242-257, (2014) · Zbl 1412.91047
[23] Koissi, M.-C.; Shapiro, A. F.; Hognas, G., Evaluating and extending the Lee-Carter model for mortality forecasting: bootstrap confidence interval, Insurance Math. Econom., 38, 1, 1-20, (2006) · Zbl 1098.62138
[24] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat., 22, 79-86, (1951) · Zbl 0042.38403
[25] Lee, R.; Carter, L., Modeling and forecasting US mortality, J. Amer. Statist. Assoc., 87, 659-671, (1992) · Zbl 1351.62186
[26] Li, J. S.-H., Pricing longevity risk with the parametric bootstrap: A maximum entropy approach, Insurance Math. Econom., 47, 176-186, (2010) · Zbl 1231.91441
[27] Li, J., A Poisson common factor model for projecting mortality and life expectancy jointly for females and males, Popul. Stud., 67, 1, 111-126, (2013)
[28] Li, J., A quantitative comparison of simulation strategies for mortality projection, Ann. Actuar. Sci., 8, 281-297, (2014)
[29] Li, J. S.H.; Chan, W. S.; Cheung, S. H., Structural changes in the Lee-Carter mortality indexes: detection and implications, N. Am. Actuar. J., 15, 1, 13-31, (2011)
[30] Li, N.; Lee, R.; Tuljapurkar, S., Using the Lee-Carter method to forecast mortality for populations with limited data, Internat. Statist. Rev., 72, 1, 19-36, (2004) · Zbl 1330.62349
[31] Li, J. S.-H.; Luo, A., Key \(q\)-duration: a framework for hedging longevity risk, Astin Bull., 42, 2, 413-452, (2012) · Zbl 1277.91089
[32] McNown, R.; Rogers, A., Forecasting mortality: a parameterized time series approach, Demography, 26, 4, 645-660, (1989)
[33] QIS5 Technical Specifications, 2010. European Insurance and Occupational Pension Authority.
[34] Renshaw, A.; Haberman, S., Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for england and wales mortality projections, J. R. Stat. Soc. Ser. C. Appl. Stat., 52, 1, 119-137, (2003) · Zbl 1111.62359
[35] Renshaw, A. E.; Haberman, S., On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling, Insurance Math. Econom., 42, 797-816, (2008) · Zbl 1152.91598
[36] Renshaw, A. E.; Haberman, S., A comparative study of parametric mortality projection models, Insurance Math. Econom., 48, 1, 35-55, (2011)
[37] Stutzer, M., A simple nonparametric approach to derivative security valuation, J. Financ., 51, 1633-1652, (1996)
[38] Tan, C.I., Li, J., Li, J.S.-H., 2014. Mortality indexes: construction, modelling and applications. Working paper.
[39] Wang, L.; Valdez, E. A.; Piggott, J., Securitization of longevity risk in reverse mortgages, N. Am. Actuar. J., 12, 4, 345-371, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.