zbMATH — the first resource for mathematics

On the functoriality of the slice filtration. (English) Zbl 1319.14029
This interesting paper studies the compatibility between the slice filtration and the structure maps of varieties over a field \(k\) satisfying resolution of singularities.
Let \(X\) be a Noetherian separated scheme of finite Krull dimension, and let \(\mathcal{M}_X\) be the category of pointed simplicial presheaves in the smooth Nisnevich site \(Sm_X\) over \(X\) equipped with the motivic Quillen model structure. Let \(T_X=S^1\wedge \mathbb{G}_m\). Let \(Spt(\mathcal{ M})\) be Jardine’s category of symmetric \(T_X\)-spectra on \(\mathcal{M}_X\) equipped with the motivic model structure, and let \(\mathcal{SH}_X\) be its homotopy category. Let \(\mathcal{SH}^\bot_X(q)\) be the triangulated full subcategory of \(\mathcal{SH}_X\) consisting of the symmetric \(T_X\)-spectra which are \(q\)-orthogonal with respect to the slice filtration in \(\mathcal{SH}_X\). Let \(s_q\) be the \(q\)-th slice in the slice filtration, and let \(g:X\to Y\) be a map of Noetherian, separated and of finite Krull dimensional schemes. The main result of the paper shows that the natural transformations \(\beta_q:\mathbf{L}g^*\circ s_q\to s_q\circ \mathbf{L}g^*\) is an isomorphism, provided that \(\mathbf{L}g^*(s_qE)\in \mathcal{SH}^\bot_X(q+1)\) for any symmetric \(T_Y\)-spectrum \(E\in \mathcal{SH}_Y\) and \(q\in \mathbb{Z}\). Here \(\mathbf{L}g^*\) is the triangulated functor induced by \(g\). As a corollary, it shows that when the field \(k\) satisfies resolution of singularities, the structure map \(g\) of a variety \(X\) is compatible with the pullback along \(g\).
The paper then provides some applications in computations of the slice filtration. For example, it computes the slices of Weibel’s homotopy invariant \(K\)-theory, and the zero slice of the sphere spectrum. It also shows that the zero slice of the sphere spectrum is a strict cofibrant ring spectrum \(\mathbf{HZ}^{sf}_X\).

14F42 Motivic cohomology; motivic homotopy theory
Full Text: DOI arXiv
[1] Voevodsky, I, Motives, polylogarithms and Hodge theory, Part I pp 3– (1998)
[2] Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II 315 pp 364– (2007) · Zbl 1153.14001
[3] DOI: 10.1112/S002461150001220X · Zbl 1026.18004 · doi:10.1112/S002461150001220X
[4] Jardine, Doc. Math. 5 pp 445– (2000)
[5] Hirschhorn, Mathematical Surveys and Monographs 99 (2003)
[6] Dundas, Doc. Math. 8 pp 489– (2003)
[7] Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I 314 pp 466– (2007) · Zbl 1153.14001
[8] DOI: 10.1016/j.aim.2008.05.013 · Zbl 1180.14015 · doi:10.1016/j.aim.2008.05.013
[9] Quillen, Homotopical algebra, Lecture Notes in Mathematics 43 (1967) · Zbl 0168.20903 · doi:10.1007/BFb0097438
[10] DOI: 10.4310/HHA.2011.v13.n2.a17 · Zbl 1281.14015 · doi:10.4310/HHA.2011.v13.n2.a17
[11] Pelaez, Astérisque 335 pp 289– (2011)
[12] DOI: 10.1016/j.crma.2009.02.028 · Zbl 1222.14038 · doi:10.1016/j.crma.2009.02.028
[13] Panin, Abel Symp. 4 pp 279– (2009)
[14] Neeman, Annals of Mathematics Studies 148 (2001)
[15] DOI: 10.1090/S0894-0347-96-00174-9 · Zbl 0864.14008 · doi:10.1090/S0894-0347-96-00174-9
[16] DOI: 10.1007/BF02698831 · Zbl 0983.14007 · doi:10.1007/BF02698831
[17] DOI: 10.1112/jtopol/jtm004 · Zbl 1154.14005 · doi:10.1112/jtopol/jtm004
[18] Weibel, Algebraic K-theory and algebraic number theory pp 461– (1987)
[19] Voevodsky, Tr. Mat. Inst. Steklova 246 pp 106– (2004)
[20] Voevodsky, Proceedings of the International Congress of Mathematicians I pp 579– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.