zbMATH — the first resource for mathematics

Exact simulation of Brown-Resnick random fields at a finite number of locations. (English) Zbl 1319.60108
Summary: We propose an exact simulation method for Brown-Resnick random fields, building on new representations for these stationary max-stable fields. The main idea is to apply suitable changes of measure.

60G60 Random fields
60G70 Extreme value theory; extremal stochastic processes
60G15 Gaussian processes
60G10 Stationary stochastic processes
65C05 Monte Carlo methods
68U20 Simulation (MSC2010)
PDF BibTeX Cite
Full Text: DOI arXiv
[1] Brown, B; Resnick, SI, Extreme values of independent stochastic processes, J. Appl. Probab., 14, 732-739, (1977) · Zbl 0384.60055
[2] Buishand, T; de Haan, L; Zhou, C, On spatial extremes: with applications to a rainfall problem, Ann. Appl. Stat., 2, 624-642, (2008) · Zbl 1273.62258
[3] Davis, RA; Klüppelberg, C; Steinkohl, C, Statistical inference for MAX-stable processes in space and time, J. Royal Statist. Soc. Ser. B, 75, 791-819, (2013) · Zbl 1411.60071
[4] Dieker, AB; Yakir, B, On asymptotic constants in the theory of Gaussian processes, Bernoulli, 20, 1600-1619, (2014) · Zbl 1298.60043
[5] Dombry, C; Éyi-Minko, F; Ribatet, M, Conditional simulation of MAX-stable processes, Biometrika, 100, 111-124, (2013) · Zbl 1316.60078
[6] Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997) · Zbl 0873.62116
[7] Engelke, S; Kabluchko, Z; Schlather, M, An equivalent representation of the Brown-resnick process, Stat. Probab. Lett., 81, 1150-1154, (2011) · Zbl 1234.60056
[8] de Haan, L, A spectral representation for MAX-stable processes, Ann. Probab., 12, 1194-1204, (1984) · Zbl 0597.60050
[9] de Haan, L; Zhou, C, On extreme value analysis of a spatial process, REVSTAT, 6, 71-81, (2008) · Zbl 1153.62074
[10] Huser, R; Davison, AC, Space-time modelling for extremes, J. Royal Statist. Soc. Ser. B, 76, 439-461, (2014)
[11] Kabluchko, Z, Spectral representations of sum- and MAX-stable processes, Extremes, 12, 401-424, (2009) · Zbl 1224.60120
[12] Kabluchko, Z; Schlather, M; de Haan, L, Stationary MAX-stable fields associated to negative definite functions, Ann. Probab., 37, 2042-2065, (2009) · Zbl 1208.60051
[13] Kroese, D.P., Botev, Z.I.: Spatial Process Generation. In: Schmidt, V (ed.) Lectures on Stochastic Geometry, Spatial Statistics and Random Fields, vol. II, Analysis, Modeling and Simulation of Complex Structures. Springer-Verlag, Berlin (2013) · Zbl 1273.62258
[14] Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin (1983) · Zbl 0518.60021
[15] Oesting, M; Kabluchko, Z; Schlather, M, Simulation of Brown-resnick processes, Extremes, 15, 89-107, (2012) · Zbl 1329.60157
[16] Oesting, M; Schlather, M, Conditional sampling for MAX-stable processes with a mixed moving maxima representation, Extremes, 17, 157-192, (2014) · Zbl 1312.60071
[17] Oesting, M., Schlather, M., Zhou, C.: On the normalized spectral representation of max-stable processes on a compact set. Preprint available from arXiv: 1310.1813 (2013) · Zbl 1431.60042
[18] Piterbarg, V.I.: Asymptotic methods in the theory of gaussian processes and fields. AMS. Trans. Math. Monogr. vol. 148 (1996) · Zbl 0841.60024
[19] R: The R project for statistical computing; see http://www.r-project.org/. 18 Jan 2015 · Zbl 0384.60055
[20] Schlather, M, Models for stationary MAX-stable random fields, Extremes, 5, 33-44, (2002) · Zbl 1035.60054
[21] Xanh, NX, Ergodic theorems for subadditive spatial processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 48, 159-176, (1979) · Zbl 0397.60081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.