Diffusion in spatially varying porous media. (English) Zbl 1320.35038


35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q84 Fokker-Planck equations
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI arXiv


[1] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl. 5, Elsevier, New York, 1978. · Zbl 0404.35001
[2] A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, Discriminating between anomalous diffusion and transient behavior in microheterogeneous environments, Biophys. J., 106 (2014), pp. L09–L11.
[3] H. Brenner, Dispersion resulting from flow through spatially periodic porous media, Philos. Trans. R. Soc. Lond. Ser. A, 297 (1980), pp. 81–133. · Zbl 0442.76076
[4] W. F. Brown, Solid mixture permittivities, J. Chem. Phys., 23 (1955), pp. 1514–1517.
[5] M. Bruna and S. J. Chapman, Diffusion of multiple species with excluded-volume effects, J. Chem. Phys., 137 (2012), 204116.
[6] M. Bruna and S. J. Chapman, Excluded-volume effects in the diffusion of hard spheres, Phys. Rev. E, 85 (2012), 011103.
[7] D. W. Chung, P. R. Shearing, N. P. Brandon, S. J. Harris, and R. E. GARCÍA, Particle size polydispersity in Li-ion batteries, J. Electrochem. Soc., 161 (2014), pp. A422–A430.
[8] J. H. Cushman, The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, Theory Appl. Transport Porous Media 10, Springer Netherlands, 1997.
[9] J. H. Cushman, L. S. Bennethum, and B. X. Hu, A primer on upscaling tools for porous media, Adv. Water Resources, 25 (2002), pp. 1043–1067.
[10] G. Dagan, Flow and Transport in Porous Formations, Springer, Berlin, 1989.
[11] Y. Davit, C. G. Bell, H. M. Byrne, L. A. C. Chapman, L. S. Kimpton, G. E. Lang, K. H. L. Leonard, J. M. Oliver, N. C. Pearson, R. J. Shipley, S. L. Waters, J. P. Whiteley, B. D. Wood, and M. Quintard, Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?, Adv. Water Resources B, 62, (2013), pp. 178–206.
[12] Y. Davit, H. M. Byrne, J. Osborne, J. Pitt-Francis, D. Gavaghan, and M. Quintard, Hydrodynamic dispersion within porous biofilms, Phys. Rev. E, 87 (2013), 012718.
[13] C. W. Fetter, Applied Hydrogeology, 4th ed., Pearson Education, Princeton, NJ, 2014.
[14] R. A. Freeze and J. A. Cherry, Groundwater, Prentice-Hall, Englewood Cliffs, NJ, 1979.
[15] L. W. Gelhar, Stochastic Subsurface Hydrology, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[16] A. Gloria, S. Neukamm, and F. Otto, Quantification of ergodicity in stochastic homogenization: Optimal bounds via spectral gap on Glauber dynamics, Invent. Math., 199 (2015), pp. 455–515. · Zbl 1314.39020
[17] Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33 (1962), pp. 3125–3131. · Zbl 0111.41401
[18] H. Jóhannesson and B. Halle, Solvent diffusion in ordered macrofluids: A stochastic simulation study of the obstruction effect, J. Chem. Phys., 104 (1996), pp. 6807–6817.
[19] S. M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russ. Math. Surv., 40 (1985), pp. 73–145. · Zbl 0615.60063
[20] J. Lux, A non-periodic closure scheme for the determination of effective diffusivity in real porous media, Transp. Porous Media, 82 (2010), pp. 299–315.
[21] J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, 2nd ed., Clarendon Press, Oxford, UK, 1881. · JFM 05.0556.01
[22] I. L. Novak, P. Kraikivski, and B. M. Slepchenko, Diffusion in cytoplasm: Effects of excluded volume due to internal membranes and cytoskeletal structures, Biophys. J., 97 (2009), pp. 758–767.
[23] G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Colloq. Math. Soc. János Bolyai 27, North Holland, 1981, pp. 835–873. · Zbl 0499.60059
[24] S. Prager, Diffusion and viscous flow in concentrated suspensions, Physica, 29 (1963), pp. 129–139. · Zbl 0111.22401
[25] M. Quintard and S. Whitaker, Transport in ordered and disordered porous media: Volume-averaged equations, closure problems, and comparison with experiment, Chem. Eng. Sci., 48 (1993), pp. 2537–2564.
[26] L. Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium, Philos. Mag., 34 (1892), pp. 481–502. · JFM 24.1015.02
[27] G. Richardson and S. J. Chapman, Derivation of the bidomain equations for a beating heart with a general microstructure, SIAM J. Appl. Math., 71 (2011), pp. 657–675. · Zbl 1243.35015
[28] G. Rimmelé, V. Barlet-Gouédard, O. Porcherie, B. Goffé, and F. Brunet, Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids, Cement Concrete Res., 38 (2008), pp. 1038–1048.
[29] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys. 127, Springer, New York, 1980. · Zbl 0432.70002
[30] M. J. Saxton, Anomalous diffusion due to obstacles: A Monte Carlo study, Biophys. J., 66 (1994), pp. 394–401.
[31] S. Torquato, Random heterogeneous media: Microstructure and improved bounds on effective properties, Appl. Mech. Rev., 44 (1991), pp. 37–76.
[32] F. J. Valdés-Parada and J. Alvarez-Ramírez, A volume averaging approach for asymmetric diffusion in porous media, J. Chem. Phys., 134 (2011), p. 204709.
[33] H. L. Weissberg, Effective diffusion coefficient in porous media, J. Appl. Phys., 34 (1963), pp. 2636–2639.
[34] S. Whitaker, The Method of Volume Averaging, Theory Appl. Transport Porous Media 13, Springer Netherlands, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.