zbMATH — the first resource for mathematics

Bayesian nonparametric hidden semi-Markov models. (English) Zbl 1320.62050
Summary: There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi-Markov modeling, which has been developed mainly in the parametric non-Bayesian setting, to allow construction of highly interpretable models that admit natural prior information on state durations.
In this paper we introduce the explicit-duration Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) and develop sampling algorithms for efficient posterior inference. The methods we introduce also provide new methods for sampling inference in the finite Bayesian HSMM. Our modular Gibbs sampling methods can be embedded in samplers for larger hierarchical Bayesian models, adding semi-Markov chain modeling as another tool in the Bayesian inference toolbox. We demonstrate the utility of the HDP-HSMM and our inference methods on both synthetic and real experiments.

62F15 Bayesian inference
60K15 Markov renewal processes, semi-Markov processes
62G08 Nonparametric regression and quantile regression
62M05 Markov processes: estimation; hidden Markov models
PDF BibTeX Cite
Full Text: Link