×

zbMATH — the first resource for mathematics

Computation with semialgebraic sets represented by cylindrical algebraic formulas. (English) Zbl 1321.68543
Watt, Stephen M. (ed.), Proceedings of the 35th international symposium on symbolic and algebraic computation, ISSAC 2010, Munich, Germany, July 25–28, 2010. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-4503-0150-3). 61-68 (2010).

MSC:
68W30 Symbolic computation and algebraic computation
03C10 Quantifier elimination, model completeness, and related topics
14P10 Semialgebraic sets and related spaces
Software:
AIDA; DIFFALG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Calini, T. Ivey, and G. Mar\'{}i-Be.a. Remarks on KdV-type .ows on star-shaped curves. Phys. D, 238(8):788 797, 2009.
[2] E. Cartan. La m\'{}ethode du rep‘ere mobile, la th\'{}eorie des groupes continus, et les espaces g\'{}en\'{}eralis\'{}es, volume 5 of Expos\'{}es de G\'{}eom\'{}etrie. Hermann, Paris, 1935. · Zbl 0010.39501
[3] J. Clelland. Lecture notes from the MSRI workshop on Lie groups and the method of moving frames. http://math.colorado.edu/ jnc/MSRI.html, 1999.
[4] M. Fels and P. J. Olver. Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math., 55(2):127 208, 1999. · Zbl 0937.53013
[5] R. B. Gardner. The method of equivalence and its applications. SIAM, Philadelphia, 1989. · Zbl 0694.53027
[6] P. A. Gri.ths. On Cartan s method of Lie groups as applied to uniqueness and existence questions in di.erential geometry. Duke Math. J., 41:775 814, 1974.
[7] E. Hubert. diffalg: extension to non commuting derivations. INRIA, Sophia Antipolis, 2005. www.inria.fr/cafe/Evelyne.Hubert/diffalg.
[8] E. Hubert. Di.erential algebra for derivations with nontrivial commutation rules. Journal of Pure and Applied Algebra, 200(1-2):163 190, 2005. · Zbl 1151.12003
[9] E. Hubert. The maple package aida -Algebraic Invariants and their Di.erential Algebras. INRIA, 2007. http://www.inria.fr/cafe/Evelyne.Hubert/aida.
[10] E. Hubert. Di.erential invariants of a Lie group action: syzygies on a generating set. Journal of Symbolic Computation, 44(3):382 416, 2009. · Zbl 1176.12004
[11] E. Hubert. Generation properties of Maurer-Cartan invariants. Preprint http://hal.inria.fr/inria-00194528, 2010.
[12] E. Hubert and I. A. Kogan. Rational invariants of a group action. Construction and rewriting. Journal of Symbolic Computation, 42(1-2):203 217, 2007. · Zbl 1121.13010
[13] E. Hubert and I. A. Kogan. Smooth and algebraic invariants of a group action. Local and global constructions. Foundations of Computational Mathematics, 7(4), 2007. · Zbl 1145.53006
[14] E. Hubert and P. J. Olver. Di.erential invariants of conformal and projective surfaces. Symmetry Integrability and Geometry: Methods and Applications, 3(097), 2007. · Zbl 1141.53010
[15] T. A. Ivey and J. M. Landsberg. Cartan for beginners: di.erential geometry via moving frames and exterior di.erential systems, volume 61 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. · Zbl 1105.53001
[16] G. R. Jensen. Higher order contact of submanifolds of homogeneous spaces. Springer-Verlag, Berlin, 1977. Lecture Notes in Mathematics, Vol. 610. · Zbl 0356.53005
[17] E. R. Kolchin. Di.erential Algebra and Algebraic Groups, volume 54 of Pure and Applied Mathematics. Academic Press, 1973.
[18] A. Kumpera. Invariants di.\'{}erentiels d un pseudogroupe de Lie. In Lecture Notes in Math., Vol. 392. Springer, Berlin, 1974. · Zbl 0313.58004
[19] A. Kumpera. Invariants di.\'{}erentiels d un pseudogroupe de Lie. I. J. Di.erential Geometry, 10(2):289 345, 1975. · Zbl 0319.58018
[20] A. Kumpera. Invariants di.\'{}erentiels d un pseudogroupe de Lie. II. J. Di.erential Geometry, 10(3):347 416, 1975. · Zbl 0346.58012
[21] E. L. Mans.eld. Algorithms for symmetric di.erential systems. Foundations of Computational Mathematics, 1(4):335 383, 2001.
[22] E. L. Mans.eld. A practical guide to the invariant calculus. Number 26 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2010.
[23] G. Mar\'{}i Be.a. Projective-type di.erential invariants and geometric curve evolutions of KdV-type in .at homogeneous manifolds. Annales de l Institut Fourier (Grenoble), 58(4):1295 1335, 2008. · Zbl 1192.37099
[24] G. Mar\'{}i Be.a. Hamiltonian evolution of curves in classical a.ne geometries. Physica D. Nonlinear Phenomena, 238(1):100 115, 2009.
[25] J. Mu noz, F. J. Muriel, and J. Rodr\'{}iguez. On the .niteness of di.erential invariants. J. Math. Anal. Appl., 284(1):266 282, 2003.
[26] P. J. Olver. Equivalence, Invariants and Symmetry. Cambridge University Press, 1995. · Zbl 0837.58001
[27] P. J. Olver. Moving frames: a brief survey. In Symmetry and perturbation theory (Cala Gonone, 2001), pages 143 150. World Sci. Publishing 2001. · Zbl 1076.53018
[28] P. J. Olver. Generating di.erential invariants. Journal of Mathematical Analysis and Applications, 333:450 471, 2007. · Zbl 1124.53006
[29] L. V. Ovsiannikov. Group analysis of di.erential equations. Academic Press Inc., New York, 1982. · Zbl 0485.58002
[30] J. F. Ritt. Di.erential Algebra, volume XXXIII of Colloquium publications. American Mathematical Society, 1950. http://www.ams.org/online_bks.
[31] A. Tresse. Sur les invariants des groupes continus de transformations. Acta Mathematica, 18:1 88, 1894. · JFM 25.0641.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.