zbMATH — the first resource for mathematics

The Bridge Theorem for totally disconnected LCA groups. (English) Zbl 1322.37007
The authors use the notion of topological entropy for uniformly continuous self-maps of uniform spaces introduced by [B. M. Hood, J. Lond. Math. Soc., II. Ser. 8, 633–641 (1974; Zbl 0291.54051)] applied to continuous endomorphisms of locally compact abelian groups. On the other hand they consider the notion of algebraic entropy given by [S. Virili, Topology Appl. 159, No. 9, 2546–2556 (2012; Zbl 1243.22007)]. In this terms a subcategory \(\Xi\) of the category of all locally compact abelian groups satisfies the Bridge Theorem if \(h_{\mathrm{top}}(\phi)=h_{\mathrm{alg}}(\hat{\phi})\) for every endomorphism \(\phi:G\rightarrow G\) in \(\Xi\), where \(\hat{\phi}:\hat{G}\rightarrow \hat{G}\) denotes the dual and \(\hat{G}\) denotes the Pontryagin dual group of \(G\). In this paper, the Bridge Theorem is proved for totally disconnected locally compact abelian groups and the result is extended to locally compact abelian groups under additional assumptions.

37B40 Topological entropy
22B05 General properties and structure of LCA groups
22D40 Ergodic theory on groups
20K30 Automorphisms, homomorphisms, endomorphisms, etc. for abelian groups
54H11 Topological groups (topological aspects)
Full Text: DOI arXiv
[1] Adler, R. L.; Konheim, A. G.; McAndrew, M. H., Topological entropy, Trans. Am. Math. Soc., 114, 309-319, (1965) · Zbl 0127.13102
[2] Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Am. Math. Soc., 153, 401-414, (1971) · Zbl 0212.29201
[3] Dikranjan, D.; Giordano Bruno, A., Entropy on abelian groups, preprint · Zbl 1368.37015
[4] Dikranjan, D.; Giordano Bruno, A., The connection between topological and algebraic entropy, Topol. Appl., 159, 13, 2980-2989, (2012) · Zbl 1256.54061
[5] Dikranjan, D.; Giordano Bruno, A., Topological entropy and algebraic entropy for group endomorphisms, (Proceedings ICTA2011, Islamabad, Pakistan, July 4-10, 2011, (2012), Cambridge Scientific Publishers), 133-214 · Zbl 1300.54002
[6] Dikranjan, D.; Giordano Bruno, A., Discrete dynamical systems in group theory, Note Mat., 33, 1, 1-48, (2013) · Zbl 1280.37023
[7] Dikranjan, D.; Goldsmith, B.; Salce, L.; Zanardo, P., Algebraic entropy of endomorphisms of abelian groups, Trans. Am. Math. Soc., 361, 3401-3434, (2009) · Zbl 1176.20057
[8] Dikranjan, D.; Prodanov, I.; Stoyanov, L., Topological groups: characters, dualities and minimal group topologies, Pure Appl. Math., vol. 130, (1989), Marcel Dekker Inc. New York, Basel
[9] Dikranjan, D.; Sanchis, M.; Virili, S., New and old facts about entropy on uniform spaces and topological groups, Topol. Appl., 159, 7, 1916-1942, (2012) · Zbl 1242.54005
[10] Hewitt, E.; Ross, K. A., Abstract harmonic analysis I, (1963), Springer-Verlag Berlin, Heidelberg, New York · Zbl 0115.10603
[11] Hood, B. M., Topological entropy and uniform spaces, J. Lond. Math. Soc., 8, 2, 633-641, (1974) · Zbl 0291.54051
[12] Pontryagin, L. S., Topological groups, (1966), Gordon and Breach New York · Zbl 0022.17104
[13] Peters, J., Entropy on discrete abelian groups, Adv. Math., 33, 1-13, (1979) · Zbl 0421.28019
[14] Peters, J., Entropy of automorphisms on L.C.A. groups, Pac. J. Math., 96, 2, 475-488, (1981) · Zbl 0478.28010
[15] van Dantzig, D., Studien over topologische algebra, (1931), Dissertation, Amsterdam · JFM 57.0716.01
[16] Virili, S., Entropy for endomorphisms of LCA groups, Topol. Appl., 159, 9, 2546-2556, (2012) · Zbl 1243.22007
[17] S. Virili, Algebraic and topological entropy of group actions, submitted for publication. · Zbl 1450.16019
[18] Weiss, M. D., Algebraic and other entropies of group endomorphisms, Math. Syst. Theory, 8, 3, 243-248, (1974/1975) · Zbl 0298.28014
[19] Yuzvinski, S., Metric properties of endomorphisms of compact groups, Izv. Acad. Nauk SSSR, Ser. Mat., Amer. Math. Soc. Transl. (2), 66, 63-98, (1968), (in Russian); English Translation:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.