zbMATH — the first resource for mathematics

The beta modified Weibull distribution. (English) Zbl 1322.62071
Summary: A five-parameter distribution so-called the beta modified Weibull distribution is defined and studied. The new distribution contains, as special submodels, several important distributions discussed in the literature, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among others. The new distribution can be used effectively in the analysis of survival data since it accommodates monotone, unimodal and bathtub-shaped hazard functions. We derive the moments and examine the order statistics and their moments. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set is used to illustrate the importance and flexibility of the new distribution.

62E10 Characterization and structure theory of statistical distributions
62N05 Reliability and life testing
62F10 Point estimation
Full Text: DOI
[1] Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36: 106–108 · Zbl 0625.62092 · doi:10.1109/TR.1987.5222310
[2] Barakat HM, Abdelkader YH (2004) Computing the moments of order statistics from nonidentical random variables. Stat Methods Appl 13: 15–26 · Zbl 1056.62012 · doi:10.1007/s10260-003-0068-9
[3] Bebbington M, Lai CD, Zitikis R (2007) A flexible Weibull extension. Reliab Eng Syst Saf 92: 719–726 · doi:10.1016/j.ress.2006.03.004
[4] Brown BW, Floyd MS, Levy LB (2002) The log F: a distribution for all seasons. Comput Stat 17: 47–58 · Zbl 1010.62012 · doi:10.1007/s001800200098
[5] Carrasco JMF, Ortega EMM, Cordeiro GM (2008) A generalized modified Weibull distribution for lifetime modeling. Comput Stat Data Anal 53: 450–462 · Zbl 1231.62015 · doi:10.1016/j.csda.2008.08.023
[6] Cox C (2008) The generalized F distribution: an umbrella for parametric survival analysis. Stat Med 27: 4301–4312 · doi:10.1002/sim.3292
[7] Cox C, Chu H, Schneider MF, Mũoz A (2007) Tutorial in biostatistics: parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 26: 4352–4374 · doi:10.1002/sim.2836
[8] Doornik J (2007) Ox 5: object-oriented matrix programming language, 5th ed. Timberlake Consultants, London
[9] Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31: 497–512 · Zbl 1009.62516 · doi:10.1081/STA-120003130
[10] Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series, and products. Academic Press, New York · Zbl 0981.65001
[11] Gupta RD, Kundu D (1999) Generalized exponential distributions. Aust NZ J Stat 41: 173–188 · Zbl 1007.62503 · doi:10.1111/1467-842X.00072
[12] Gupta RD, Kundu D (2001) Exponentiated exponential distribution: an alternative to gamma and Weibull distributions. Biomet J 43: 117–130 · Zbl 0997.62076 · doi:10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
[13] Gupta AK, Nadarajah S (2004) Handbook of beta distribution and its applications. Marcel Dekker, New York · Zbl 1062.62021
[14] Haupt E, Schabe H (1992) A new model for a lifetime distribution with bathtub shaped failure rate. Microelectron Reliab 32: 633–639 · doi:10.1016/0026-2714(92)90619-V
[15] Hosking JRM (1986) The theory of probability weighted moments. Research Report RC12210, IBM Thomas J. Watson Research Center, New York.
[16] Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B 52: 105–124 · Zbl 0703.62018
[17] Jones MC (2004) Family of distributions arising from distribution of order statistics. Test 13: 1–43 · Zbl 1110.62012 · doi:10.1007/BF02602999
[18] Kundu D, Rakab MZ (2005) Generalized Rayleigh distribution: different methods of estimation. Comput Stat Data Anal 49: 187–200 · Zbl 1429.62449 · doi:10.1016/j.csda.2004.05.008
[19] Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. Trans Reliab 52: 33–37 · doi:10.1109/TR.2002.805788
[20] Lee C, Famoye F, Olumolade O (2007) Beta-Weibull distribution: some properties and applications to censored data. J Mod Appl Stat Methods 6: 173–186
[21] Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-real data. IEEE Trans Reliab 42: 299–302 · Zbl 0800.62609 · doi:10.1109/24.229504
[22] Mudholkar GS, Srivastava DK, Friemer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37: 436–445 · Zbl 0900.62531 · doi:10.1080/00401706.1995.10484376
[23] Mudholkar GS, Srivastava DK, Kollia GD (1996) A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91: 1575–1583 · Zbl 0881.62017 · doi:10.1080/01621459.1996.10476725
[24] Nadarajah S, Gupta AK (2004) The beta Fréchet distribution. Far East J Theor Stat 14: 15–24 · Zbl 1074.62008
[25] Nadarajah S, Kotz S (2004) The beta Gumbel distribution. Math Prob Eng 10: 323–332 · Zbl 1068.62012 · doi:10.1155/S1024123X04403068
[26] Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saf 91: 689–697 · Zbl 1272.62016 · doi:10.1016/j.ress.2005.05.008
[27] Nelson W (1990) Accelerated life testing: statistical models, data analysis and test plans. Wiley, New York · Zbl 0717.62089
[28] Pham H, Lai CD (2007) On recent generalizations of the Weibull distribution. IEEE Trans Reliab 56: 454–458 · doi:10.1109/TR.2007.903352
[29] Rajarshi S, Rajarshi MB (1988) Bathtub distributions: a review. Commun Stat Theory Methods 17: 2521–2597 · Zbl 0696.62027 · doi:10.1080/03610928808829761
[30] Wang FK (2000) A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab Eng Syst Saf 70: 305–312 · doi:10.1016/S0951-8320(00)00066-1
[31] Xie M, Lai CD (1995) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52: 87–93 · doi:10.1016/0951-8320(95)00149-2
[32] Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub failure rate function. Reliab Eng Syst Saf 76: 279–285 · doi:10.1016/S0951-8320(02)00022-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.