zbMATH — the first resource for mathematics

A restricted multinomial hybrid selection procedure. (English) Zbl 1322.62084

62F07 Statistical ranking and selection procedures
62L10 Sequential statistical analysis
Full Text: DOI
[1] R. E. Bechhofer and P. Chen. 1991. A note on a curtailed sequential procedure for subset selection of multinomial cells. American Journal of Mathematical and Management Sciences 11, 3–4, 309–324. · Zbl 0774.62084
[2] R. E. Bechhofer, S. Elmaghraby, and N. Morse. 1959. A single-sample multiple-decision procedure for selecting the multinomial event which has the highest probability. Annals of Mathematical Statistics 30, 1, 102–119. · Zbl 0218.62064 · doi:10.1214/aoms/1177706362
[3] R. E. Bechhofer and D. Goldsman. 1985. Truncation of the Bechhofer-Kiefer-Sobel sequential procedure for selecting the multinomial event which has the largest probability. Communications in Statistics—Simulation and Computation B14, 283–315. · Zbl 0583.62023 · doi:10.1080/03610918508812441
[4] R. E. Bechhofer, and D. Goldsman. 1986. Truncation of the Bechhofer-Kiefer-Sobel sequential procedure for selecting the multinomial event which has the largest probability (ii): Extended tables and an improved procedure. Communications in Statistics—Simulation and Computation 15, 3, 829–851. · Zbl 0601.62034 · doi:10.1080/03610918608812545
[5] R. E. Bechhofer, J. Kiefer, and M. Sobel. 1968. Sequential Identification and Ranking Procedures (with Special Reference to Koopman-Darmois Populations). University of Chicago Press, Chicago. · Zbl 0208.44601
[6] R. E. Bechhofer, T. J. Santner, and D. Goldsman. 1995. Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons. Wiley Series in Probability and Statistics. Wiley, New York.
[7] P. Chen. 1988. On selecting the best ofksystems: An expository survey of subset-selection multinomial procedures. In Proceedings of 1988 Winter Simulation Conference, M. Abrams, P. Haigh, and J. Comfort (Eds.). 440–444. · doi:10.1109/WSC.1988.716198
[8] P. Chen and L. Hsu. 1991. A composite stopping rule for multinomial subset selection. British Journal of Mathematical and Statistical Psychology 44, 403–411. · doi:10.1111/j.2044-8317.1991.tb00971.x
[9] T. Gastaldi. 2005. On the minimization of multinomial tails and the Gupta-Nagel conjecture. Journal of Multivariate Analysis 94, 70–108. · Zbl 1067.62053 · doi:10.1016/j.jmva.2004.10.010
[10] S. S. Gupta and K. Nagel. 1967. On selection and ranking procedures and order statistics from the multinomial distribution. Sankhyã B29, 1–17.
[11] S. S. Gupta and S. Panchapakesan. 1979. Multiple Decision Procedures—Theory and Methodology of Selecting and Ranking Populations. John Wiley & Sons, New York. · Zbl 0516.62030
[12] J. C. Hsu. 1996. Multiple Comparisons: Theory and Methods. Chapman & Hall, London. · Zbl 0898.62090 · doi:10.1007/978-1-4899-7180-7
[13] H. Kesten and N. Morse. 1959. A property of the multinomial distribution. Annals of Mathematical Statistics 30, 1, 120–127. · Zbl 0218.62017 · doi:10.1214/aoms/1177706363
[14] S.-H. Kim and B. L. Nelson. 2006. Selecting the best system. In Handbooks in Operations Research and Management Science: Simulation, S. G. Henderson and B. L. Nelson (Eds.). Vol. 13. Elsevier, Amsterdam, Chapter 17, 501–534.
[15] J. O. Miller, B. L. Nelson, and C. H. Reilly. 1998. Efficient multinomial selection in simulation. Naval Research Logistics 45, 459–482. · Zbl 0940.90062 · doi:10.1002/(SICI)1520-6750(199808)45:5<459::AID-NAV2>3.0.CO;2-2
[16] B. L. Nelson and F. J. Matejcik. 1995. Using common random numbers for indifference-zone selection and multiple comparisons in simulation. Management Science 41, 1935–1963. · Zbl 0853.65149 · doi:10.1287/mnsc.41.12.1935
[17] S. Panchapakesan. 1971. On a subset selection procedure for the most probable event in a multinomial distribution. In Statistical Decision Theory and Related Topics, S. S. Gupta and J. Yackel (Eds.). Academic Press, New York, 275–298. · Zbl 0244.62023 · doi:10.1016/B978-0-12-307550-5.50019-8
[18] J. T. Ramey and K. Alam. 1979. A sequential procedure for selecting the most probable event in a multinomial event. Biometrika 66, 171–173. · doi:10.1093/biomet/66.1.171
[19] H. Vieira Jr. 2011. Selecting the System Most Likely to Be the Best in the Presence of an Infinite Number of Alternatives. Ph.D. Dissertation. Aeronautics Institute of Technology. Retrieved August 26, 2013, from http://www.bd.bibl.ita.br/tesesdigitais/62037.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.