×

zbMATH — the first resource for mathematics

A posteriori error estimates for mixed finite element and finite volume methods for parabolic problems coupled through a boundary. (English) Zbl 1322.65093

MSC:
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
35K40 Second-order parabolic systems
Software:
MMMFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295–1315. · Zbl 1001.65126
[2] T. Arbogast, D. Estep, B. Sheehan, and S. Tavener, A posteriori error estimates for mixed finite element and finite volume methods for problems coupled through a boundary with nonmatching grids, IMA J. Numer. Anal., 34 (2014), pp. 1625–1653. · Zbl 1303.65093
[3] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), pp. 319–346. · Zbl 1322.76039
[4] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10 (2001), pp. 1–102. · Zbl 1105.65349
[5] F. Ben Belgacem, The mixed mortar finite element method for the incompressible Stokes problem: Convergence analysis, SIAM J. Numer. Anal., 37 (2000), pp. 1085–1100. · Zbl 0959.65126
[6] C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: The mortar element method, in Nonlinear Partial Differential Equations and Their Applications, Longman Scientific and Technical, Harlow, UK, 1994. · Zbl 0797.65094
[7] C. Bernardi, Y. Maday, and F. Rapetti, Basics and some applications of the mortar element method, GAMM-Mitt., 28 (2005), pp. 97–123. · Zbl 1177.65178
[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[9] T. Butler, D. Estep, and J. Sandelin, A computational measure theoretic approach to inverse sensitivity problems II: A posteriori error analysis, SIAM J. Numer. Anal., 50 (2012), pp. 22–45. · Zbl 1252.60002
[10] J. R. Cary, J. Candy, R. H. Cohen, S. Krasheninnikov, D. C. McCune, D. J. Estep, J. Larson, A. D. Malony, A. Pankin, P. H. Worley, J. A. Carlsson, A. H. Hakim, P. Hamill, S. Kruger, M. Miah, S. Muzsala, A. Pletzer, S. Shasharina, D. Wade-Stein, N. Wang, S. Balay, L. McInnes, H. Zhang, T. Casper, L. Diachin, T. Epperly, T. D. Rognlien, M. R. Fahey, J. Cobb, A. Morris, S. Shende, G. W. Hammett, K. Indireshkumar, D. Stotler, and A. Y. Pigarov, First results from core-edge parallel composition in the facets project, J. Phys.: Conf. Ser., 125 (2008), 012040.
[11] J. R. Cary, A. Hakim, M. Miah, S. Kruger, A. Pletzer, S. Shasharina, S. Vadlamani, A. Pankin, R. Cohen, T. Epperly, T, Rognlien, R. Groebner, S. Balay, L. McInnes, and H. Zhang, FACETS — a framework for parallel coupling of fusion components, in Proceedings of the 18th IEEE Euromicro International Conference on Parallel, Distributed and Network-Based Computing, Pisa, Italy, 2010, pp. 435–442.
[12] J. B. Collins, D. Estep, and S. Tavener, A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques, BIT, 2014, DOI 10.1007/s10543-014-0534-9. · Zbl 1332.65120
[13] G. Edwards and C. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2 (1998), pp. 259–290. · Zbl 0945.76049
[14] D. Estep, Error estimation for multiscale operator decomposition for multiphysics problems, in Multiscale Methods: Bridging the Scales in Science and Engineering, J. Fish, ed., Oxford University Press, Oxford, UK, 2010. · Zbl 1218.65100
[15] D. Estep, M. G. Larson, and R. D. Williams, Estimating the error of numerical solutions of systems of reaction-diffusion equations, Mem. Amer. Math. Soc., 146 (2000), 696.
[16] D. Estep, A. M\aalqvist, and S. Tavener, Nonparametric density estimation for randomly perturbed elliptic problems I: Computational methods, a posteriori analysis, and adaptive error control, SIAM J. Sci. Comput., 31 (2009), pp. 2935–2959. · Zbl 1194.65128
[17] D. Estep, A. M\aalqvist, and S. Tavener, Nonparametric density estimation for randomly perturbed elliptic problems II: Applications and adaptive modeling, Internat. J. Numer. Methods Engrg., 80 (2009), pp. 846–867. · Zbl 1176.76108
[18] D. Estep, M. Pernice, D. Pham, S. Tavener, and H. Wang, A posteriori analysis of a cell-centered finite volume method for semilinear elliptic problems, J. Comput. Appl. Math., 233 (2009), pp. 459–472. · Zbl 1176.65125
[19] D. Estep, S. Tavener, and T. Wildey, A posteriori analysis and improved accuracy for an operator decomposition solution of a conjugate heat transfer problem, SIAM J. Numer. Anal., 46 (2008), pp. 2068–2089. · Zbl 1176.65124
[20] D. Estep, S. Tavener, and T. Wildey, A posteriori error analysis for a transient conjugate heat transfer problem, Finite Elem. Anal. Des., 45 (2009), pp. 263–271.
[21] D. Estep, S. Tavener, and T. Wildey, A posteriori error estimation and adaptive mesh refinement for a multi-discretization operator decomposition approach to fluid-solid heat transfer, J. Comput. Phys., 229 (2010), pp. 4143–4158. · Zbl 1281.80004
[22] C. Farhat, M. Lesoinne, and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Engrg., 157 (1998), pp. 95–114. · Zbl 0951.74015
[23] S. Gaiffe, R. Glowinski, and R. Masson, Domain decomposition and splitting methods for mortar mixed finite element approximations to parabolic equations, Numer. Math., 93 (2002), pp. 53–75. · Zbl 1010.65037
[24] B. Ganis and I. Yotov, Implementation of a mortar mixed finite element method using a multiscale flux basis, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3989–3998. · Zbl 1231.76145
[25] M. B. Giles and E. Suli, Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality, Acta Numer., 11 (2002), pp. 145–236. · Zbl 1105.65350
[26] R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. Periaux, eds., SIAM, Philadelphia, 1988, pp. 144–172.
[27] P. Hansbro and M. G. Larson, A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love plate, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 3289–3295. · Zbl 1230.74180
[28] T.-T.-P. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space-time domain decomposition methods for diffusion problems in mixed formulations, SIAM J. Numer. Anal., 51 (2013), pp. 3532–3559. · Zbl 1295.65095
[29] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans, C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski, A. Peters Randles, D. Reynolds, B. Riviere, U. Ruede, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel, B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, Multiphysics simulations: Challenges and opportunities, Int. J. High Perf. Comput. Appl., 27 (2013), pp. 4–83.
[30] A. Quarteroni, F. Pasquarelli, and A. Valli, Heterogeneous domain decomposition: Principles, algorithms, applications, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1992, pp. 129–150. · Zbl 0771.65061
[31] J. E. Roberts and J. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Elsevier Science Publishers B.V., Amsterdam, 1991, pp. 523–639. · Zbl 0875.65090
[32] T. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in The Mathematics of Reservoir Simulation, R. E. Ewing, ed., SIAM, Philadelphia, 1984, pp. 35–106.
[33] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25 (1988), pp. 351–375. · Zbl 0644.65062
[34] M. F. Wheeler and I. Yotov, A posteriori error estimates for the mortar mixed finite element method, SIAM J. Numer. Anal., 43 (2005), pp. 1021–1042. · Zbl 1094.65114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.