×

Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. (English) Zbl 1322.74023

Summary: A nonlocal elastic beam model is developed to investigate the small scale effects on the large-amplitude vibration analysis of embedded multiwalled carbon nanotubes (MWCNTs) at an elevated temperature. The nested slender nanotubes are coupled with each other through the van der Waals (vdW) interlayer interaction. The curvature-dependent vdW force employed incorporates not only pairwise nearest-neighbor but also nonneighbor interactions between nested nanotubes. The incremental harmonic balance method is adopted to analytically solve the nonlinear equations governing by the vibrations of nested nanotubes. The effects of small scale parameter, geometrical parameters, temperature rise, and the elastic medium are fully examined.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M05 Control, switches and devices (“smart materials”) in solid mechanics
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Iijima, S.: Helica microtubes of graphitic carbon. Nature 354, 56 (1991) · doi:10.1038/354056a0
[2] Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 67, 1–28 (2007) · doi:10.1016/j.compscitech.2006.03.031
[3] Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. Proc. IEEE 91(11), 1772–1784 (2003) · doi:10.1109/JPROC.2003.818338
[4] Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A., Ootuka, Y., Alphenaar, B.W.: Carbon nanotube devices for nanoelectronics. Physica B 323(1–4), 107–114 (2002) · doi:10.1016/S0921-4526(02)00993-6
[5] Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002) · doi:10.1126/science.1060928
[6] Choi, W.B., Bae, E., Kang, D., Chae, S., Cheong, B., Ko, J., Lee, E., Park, W.: Aligned carbon nanotubes for nanoelectronics. Nanotechnology 15, S512–S516 (2004) · doi:10.1088/0957-4484/15/10/003
[7] Baughman, R.H., Cui, C., Zakhidov, A.A., Iqba, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotubes actuators. Science 284, 1340–1344 (1999) · doi:10.1126/science.284.5418.1340
[8] Iijima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996) · doi:10.1063/1.470966
[9] Yakobson, B.I., Campbell, M.P., Brabec, C.J., Bernholc, J.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997) · doi:10.1016/S0927-0256(97)00047-5
[10] Hernandez, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80(20), 4502–4505 (1988) · doi:10.1103/PhysRevLett.80.4502
[11] Yang, W., Ma, X.L., Wang, H.T., Hong, W.: The advancement of nanomechanics (continued). Adv. Mech. 33(2), 175–185 (2003)
[12] Fu, Y.M., Hong, J.W., Wang, X.Q.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 296, 746–756 (2006) · doi:10.1016/j.jsv.2006.02.024
[13] Ansari, R., Hemmatnezhad, M., Ramezannezhad, H.: Application of HPM to the nonlinear vibrations of multiwalled carbon nanotubes, Numerical methods for partial differential equations. Numer. Methods Partial Differ. Equ. 26, 490–500 (2010) · Zbl 1295.74104
[14] Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983) · doi:10.1063/1.332803
[15] Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002) · Zbl 1023.74003
[16] He, X.Q., Kitipornchaia, S., Liewb, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005) · Zbl 1162.74354 · doi:10.1016/j.jmps.2004.08.003
[17] Wang, Q., Varadan, V.K., Quek, S.T.: Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357, 130–135 (2006) · Zbl 05358613 · doi:10.1016/j.physleta.2006.04.026
[18] Yang, H.K., Wang, X.: Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium. Compos. Struct. 77, 182–192 (2007) · doi:10.1016/j.compstruct.2005.06.013
[19] Gao, Y., Lei, F.-M.: Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem. Biophys. Res. Commun. 387, 467–471 (2009) · doi:10.1016/j.bbrc.2009.07.042
[20] Aydogdu, M.: A general nonlocal beam theory. Its application to nano beam bending, buckling and vibration. Physica E 41, 1651–1655 (2009) · doi:10.1016/j.physe.2009.05.014
[21] Murmu, T., Pradhan, S.C.: Buckling analysis of a single walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 41, 1232–1239 (2009) · doi:10.1016/j.physe.2009.02.004
[22] Ay, R.A., Tepe, Ş.: The initial values method for buckling of nonlocal bars with application in nanotechnology. Eur. J. Mech. A, Solids 27, 469–477 (2008) · Zbl 1154.74341 · doi:10.1016/j.euromechsol.2007.09.004
[23] Radhan, S.C.: Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys. Lett. A 373, 4182–4188 (2009) · Zbl 1236.74010 · doi:10.1016/j.physleta.2009.09.021
[24] Pradhan, S.C., Murmu, T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47, 268–274 (2009) · doi:10.1016/j.commatsci.2009.08.001
[25] Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007) · Zbl 1213.74194 · doi:10.1016/j.ijengsci.2007.04.004
[26] Wang, Q., Zhou, G.Y., Lin, K.C.: Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct. 43, 6071–6084 (2006) · Zbl 1120.74554 · doi:10.1016/j.ijsolstr.2005.11.005
[27] Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)
[28] Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006) · doi:10.1088/0964-1726/15/2/050
[29] Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007) · Zbl 1124.74029 · doi:10.1016/j.ijsolstr.2006.12.034
[30] Wang, Q., Wang, C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes. Nanotechnology 18, 75–702 (2007)
[31] Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105–401 (2007)
[32] Khosravian, N., Rafii-Tabar, H.: Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Nanotechnology 19, 275–703 (2008) · doi:10.1088/0957-4484/19/27/275703
[33] Heireche, H., Tounsi, A., Benzair, A.: Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology 19, 185–703 (2008) · doi:10.1088/0957-4484/19/18/185703
[34] Heireche, H., Tounsi, A., Benzair, A., Maachou, M., Adda Bedia, E.A.: Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Physica E 40, 2791–2799 (2008) · doi:10.1016/j.physe.2007.12.021
[35] Aydogdu, M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E 41, 861–864 (2009) · doi:10.1016/j.physe.2009.01.007
[36] Murmu, T., Pradhan, S.C.: Small-scale effect on the vibration of non-uniform nanocantilever based on nonlocal elasticity theory. Physica E 41, 1451–1456 (2009) · doi:10.1016/j.physe.2009.04.015
[37] Murmu, T., Pradhan, S.C.: Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46, 854–859 (2009) · doi:10.1016/j.commatsci.2009.04.019
[38] Lee, H.L., Chang, W.J.: Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Physica E 41, 529–532 (2009) · doi:10.1016/j.physe.2008.10.002
[39] Nayfeh, A.H.: Nonlinear Oscillation. Wiley, New York (1979)
[40] Lanir, Y., Fung, Y.C.B.: Fiber composite columns under compressions. J. Compos. Mater. 6, 387–401 (1972)
[41] Hahn, H.T., Williams, J.G.: Compression failure mechanisms in unidirectional composites. In: Composite Materials: Testing and Design, vol. 7, pp. 115–139 (1984)
[42] He, X.Q., Kitipornchaia, S., Liewb, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005) · Zbl 1162.74354 · doi:10.1016/j.jmps.2004.08.003
[43] Ansari, R., Hemmatnezhad, M.: Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn. doi: 10.1007/s11071-011-9985-6 · Zbl 1217.74056
[44] Wang, L., Ni, Q., Li, M., Qian, Q.: The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E (2008)
[45] Nanorex Inc.: NanoHive-1 v.1.2.0-b1. www.nanoengineer-1.com (2005)
[46] Ru, C.Q.: Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962–16967 (2000) · doi:10.1103/PhysRevB.62.16962
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.