zbMATH — the first resource for mathematics

Mathematical knowledge representation: semantic models and formalisms. (English) Zbl 1323.68472
Summary: The paper provides a survey of semantic methods for solution of fundamental tasks in mathematical knowledge management. Ontological models and formalisms are discussed. We propose an ontology of mathematical knowledge, covering wide range of fields of mathematics. We demonstrate applications of this representation in mathematical formula search, and learning.

68T30 Knowledge representation
68P20 Information storage and retrieval of data
Full Text: DOI
[1] D. E. Knuth, The TEX book (Addison-Wesley Publishing Company, 1986). · Zbl 0609.68001
[2] CTAN. Comprehensive TEX Archive Network. URL: http://www.ctan.org/
[3] Wolfram Mathematica. URL: http://www.wolfram.com/mathematica/
[4] WolframAlpha computational knowledge engine. URL: http://www.wolframalpha.com/
[5] S. Wolfram, A New Kind of Science (WolframMedia, Inc., 2002). · Zbl 1022.68084
[6] Math Jax. Beautiful math in all browsers. URL: http://www.mathjax.org/
[7] Cervone, D, No article title, Notices of the American Mathematical Society, 59, 312, (2012) · Zbl 1237.68242
[8] ASCIIMathML.js (ver 2.0): Translating ASCII math notation to MathML and graphics. URL: http://www1.chapman.edu/ jipsen/mathml/asciimath.html · Zbl 1390.01100
[9] Zhizhchenko, A B; Izaak, A D, No article title, Russian Math. Surveys, 62, 943, (2007) · Zbl 1149.00017
[10] Kuhn, S; Helmus, T; Lancashire, R J; Murray-Rust, P; Rzepa, H S; Steinbeck, C; Willighagen, E L, No article title, J. Chem. Inf. Mod., 47, 2015, (2007)
[11] Murray-Rust, P, No article title, Journal of Cheminformatics, 3, 48, (2011)
[12] MKM-IG. Mathematical Knowledge Management. URL: http://www.mkm-ig.org/
[13] Sperber, W, Search engines and bibliographic databases, 26-30, (2008)
[14] Carette, J; Farmer, W M, A review of mathematical knowledge management, Intelligent Computer Mathematics. Lecture Notes in Computer Science, 5625, 233, (2009) · Zbl 1247.68266
[15] Ion, PD F, Mathematics and the world wide web, No. 7961, 230, (2013) · Zbl 1390.01100
[16] Lange, C, No article title, Semantic Web., 4, 119, (2013)
[17] Barendregt, H; Wiedijk, F, No article title, Transactions A of the Royal Society, 363, 2351, (2005) · Zbl 1152.03304
[18] Elizarov, AM; Lipachev, E K; Nevzorova, O A; Solov’ev, V D, No article title, Doklady Math., 90, 521, (2014) · Zbl 1328.68288
[19] Biryal’tsev, E V; Elizarov, A M; Zhil’tsov, N G; Lipachev, E K; Nevzorova, O A; Solov’ev, V D, No article title, Automatic Documentation and Mathematical Linguistics, 48, 81, (2014)
[20] S. Parinov and M. Kogalovsky, Applied Informatics 6 (2009); URL: http://www.ipr-ras.ru/articles/koga-pari09-2.pdf.
[21] Liber Mathematicae, URL: http://math.colorado.edu/libermath/.
[22] M. J. Pflaum, J. Tuley, arXiv:1102.5720.
[23] Computable Document Format (CDF) for Interactive Content, URL: http://wolfram.com/cdf
[24] Mizar Project, URL: http://mizar.org/project/.
[25] The Coq Proof Assistant, URL: http://coq.inria.fr/. · Zbl 1039.68543
[26] Berners-Lee, T; Hendler, J; Lassila, O, No article title, Scientific American, 284, 28, (2001)
[27] R. Ausbrooks et al., Mathematical Markup Language (MathML) Version 3.0. W3C Candidate Recommendation of 15 December 2009. World Wide Web Consortium 13 (2009).
[28] Miner, R, No article title, Notices of the AMS, 52, 532, (2005) · Zbl 1079.68641
[29] Word to LaTeX, LaTeX toWord Converters, URL: http://www.tex2word.com/.
[30] A LaTeX to XML/HTML/MathML Converter, URL: http://dlmf.nist.gov/LaTeXML/.
[31] M. Kohlhase, OMDoc-An open markup format for mathematical documents [Version 1.2] (Berlin: Springer, 2006).
[32] Iancu, M; Kohlhase, M; Rabe, F; Urban, J, No article title, Journal of Automated Reasoning, 50, 191, (2013) · Zbl 1260.68375
[33] C. David, M. Kohlhase, C. Lange, F. Rabe, N. Zhiltsov, and V. Zholudev, Proc. 7th Extended SemanticWeb Conference (ESWC) 370 (2010); URL: http://arxiv.org/pdf/1004.3390.pdf.
[34] M. Kohlhase, STEX: Semantic Markup in TEX/LATEX (2005); URL: https://svn.kwarc.info/repos/stex/trunk/sty/stex.pdf.
[35] Kohlhase, M, No article title, Math. Comput. Sci., 2, 279, (2008) · Zbl 1176.68230
[36] Kamareddine, F; Wells, J B, No article title, Electr. Notes Theor. Comput. Sci., 205, 5, (2008) · Zbl 1277.68288
[37] V. Solovyev and N. Zhiltsov, Proceedings of the International Conference on Web Intelligence, Mining and Semantics (WIMS’11). ACM, 21:1-21:9 (2011).
[38] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, in The Semantic Web (Springer Berlin Heidelberg, 2007), p. 722.
[39] K. Aberer, A. Boyarsky, P. Cudré-Mauroux, G. Demartini, and O. Ruchayskiy, in 10th International Semantic Web Conference (ISWC 2011 — Demo, 2011).
[40] Sloane, N, No article title, Notices of the AMS, 50, 912, (2003) · Zbl 1044.11108
[41] R. Thomas, MSOR Connections 4(3) (2004).
[42] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1987). · Zbl 0645.68104
[43] Gruber, T R, No article title, Knowledge Acquisition, 5, 199, (1993)
[44] Studer, R; Benjamins, R; Fensel, D, No article title, Data & Knowledge Engineering., 25, 161, (1998) · Zbl 0896.68114
[45] N. Guarino, D. Oberle, S. Staab, in Handbook on Ontologies, 2nd ed. (Springer, New York, 2009), pp. 1-17.
[46] J. Angele, M. Kifer, and G. Lausen, in Handbook on Ontologies, 2nd ed. (Springer, New York, 2009), pp. 45-68.
[47] F. Baader, I. Horrocks, and U. Sattler, in Handbook on Ontologies, 2nd ed. (Springer, New York, 2009), pp. 21-43.
[48] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph (eds,.) OWL 2 Web Ontology Language Primer, http://www.w3.org/TR/owl2-primer/.
[49] O. Nevzorova, N. Zhiltsov, A. Kirillovich, and E. Lipachev, KESW 2014, CCIS 468. 105-119 (2014); URL: http://arxiv.org/abs/1407.4833.
[50] A. M. Elizarov, E. K. Lipachev, and M. A. Malakhaltsev, Web Technologies for Mathematicians: The Basics of MathML. A Practical Guide (Fizmatlit, Moscow, 2010) [In Russian].
[51] O. Nevzorova, N. Zhiltsov, D. Zaikin, O. Zhibrik, A. Kirillovich, V. Nevzorov, and E. Birialtsev, in 12th Int. Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings (Springer, Berlin, 2013), Part 1, Vol. 8218, pp. 379-394.
[52] D. Velleman, How to Prove It: A Structured Approach, 2nd ed. (Cambridge University Press, 2006). · Zbl 1101.00008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.