×

Thin solids for fluid-structure interaction. (English) Zbl 1323.74094

Bungartz, Hans-Joachim (ed.) et al., Fluid-structure interaction. Modelling, simulation, optimisation. Proceedings of the workshop, Hohenwart, Germany, October 2005. Berlin: Springer (ISBN 3-540-34595-7/pbk). Lecture Notes in Computational Science and Engineering 53, 294-335 (2006).
Summary: In this contribution the use of hexahedral elements for the structural simulation in a fluid structure interaction framework is presented, resulting in a consistent kinematic and geometric description of the solid. In order to compensate the additional numerical effort of the three-dimensional approach, an anisotropic \(p\)-adaptive method for linear elastodynamic problems is proposed, resulting in a clearly higher efficiency and higher convergence rates than uniform \(p\)-extensions. Special emphasis is placed on the accurate transfer of loads considering the fluid discretization for computation of the surface load integrals. For a coupling with a Cartesian grid based Lattice Boltzmann code it was found that oscillations in the interface tractions may excite higher structural modes possibly leading to a nonstable coupling behavior. A first remedy to this problem was a linear modal analysis of the structure, thus allowing to control the number of modes to be considered without disregarding bidirectional fluid structure interactions. Preliminary results are presented for the FSI benchmark configuration proposed in this book.
For the entire collection see [Zbl 1097.76002].

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76M28 Particle methods and lattice-gas methods
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Düster, A.: High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München, http://​www.​inf.​bv.​tum.​de/​^{ }duester (2001)
[2] Düster, A., Bröker, H., Rank, E.: The p-version of the finite element method for three-dimensional curved thin walled structures. International Journal for Numerical Methods in Engineering 52 (2001) 673-703 · Zbl 1058.74079
[3] Scholz, D., Düster, A., Rank, E.: Model-adaptive structural FEM computations for fluid-structure interaction. In: Proceedings of the Third M.I.T. Conference on Computational Fluid and Solid Mechanics, Cambridge, USA (2005)
[4] Scholz, D., Rank, E., Glück, M., Breuer, M., Durst, F.: Fully three-dimensional coupling of fluid and thin-walled structures. In: High Performance Computing in Science and Engineering. Springer (2004)
[5] Düster, A., Bröker, H., Heidkamp, H., Heißerer, U., Kollmannsberger, S., Krause, R., Muthler, A., Niggl, A., Nübel, V., Rücker, M., Scholz, D.: AdhoC 4 - User’s Guide. Lehrstuhl für Bauinformatik, Technische Universität München. (2004)
[6] Brenk, M., Bungartz, H.J., Mehl, M., Neckel, T.: Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Interface. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation. (Springer Verlag) · Zbl 1323.76047
[7] Geller, S., Tölke, J., Krafczyk, M., Scholz, D., Düster, A., Rank, E.: Simulation of bidirectional fluid-structure interaction based on explicit coupling approaches of Lattice Boltzmann and p-FEM solvers. In: Proceedings of the Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, Santorini, Greece (2005)
[8] Geller, S., Tölke, J., Krafczyk, M.: Lattice-Boltzmann Method on quadtree type grids for the Fluid-Structure-Interaction. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation (LNCSESeries). Springer Verlag (2006) · Zbl 1323.76079
[9] Hron, J., Turek, S.: Proposal for numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation. (to appear in Springer’s LNCSE-Series)) · Zbl 1323.76049
[10] Szabó, B., Babuška, I.: Finite element analysis. John Wiley&Sons (1991)
[11] Szabó, B., Düster, A., Rank, E.: The p-version of the Finite Element Method. In Stein, E., de Borst, R., Hughes, T., eds.: Encyclopedia of Computational Mechanics. Volume 1. John Wiley&Sons (2004) 119-139
[12] Gordon, W., Hall, C.: Construction of curvilinear co-ordinate systems and applications to mesh generation. International Journal for Numerical Methods in Engineering 7 (1973) 461-477 · Zbl 0271.65062
[13] Gordon, W., Hall, C.: Transfinite element methods: Blending function interpolation over arbitrary curved element domains. Numerische Mathematik 21 (1973) 109-129 · Zbl 0254.65072
[14] Királyfalvi, G., Szabó, B.: Quasi-regional mapping for the p-version of the finite element method. Finite Elements in Analysis and Design 27 (1997) 85-97 · Zbl 0916.73056
[15] Piegl, L., Tiller, W.: The Nurbs Book. 2. edn. Springer-Verlag (1997) · Zbl 0868.68106
[16] Bröker, H.: Integration von geometrischer Modellierung und Berechnung nach der p-Version der FEM. PhD thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München (2001)
[17] Chen, Q., Babuška, I.: Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Computer Methods in Applied Mechanics and Engineering 128 (1995) 405-417 · Zbl 0862.65006
[18] Chen, Q., Babuška, I.: The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Computer Methods in Applied Mechanics and Engineering 137 (1996) 89-94 · Zbl 0877.65004
[19] Nübel, V.: Die adaptive \(rp\)-Methode für elastoplastische Probleme. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München (2005)
[20] Rank, E., Düster, A., Nübel, V., Preusch, K., Bruhns, O.: High order finite elements for shells. Computer Methods in Applied Mechanics and Engineering 194 (2005) 2494-2512 · Zbl 1082.74056
[21] Scordelis, A., Lo, K.: Computer analysis of cylindrical shells. Journal of the American Concrete Institute 61 (1969) 539-561
[22] Düster, A., Scholz, D., Rank, E.: \(pq\)-Adaptive solid finite elements for threedimensional plates and shells. submitted to Computer Methods in Applied Mechanics and Engineering (2005) · Zbl 1169.74598
[23] Bathe, K.: Finite element procedures. Prentice Hall (1996) · Zbl 0994.74001
[24] Hulbert, G.: Computational structural dynamics. In Stein, E., de Borst, R., Hughes, T., eds.: Encyclopedia of Computational Mechanics. Volume 2. John Wiley&Sons (2004) 169-193
[25] Newmark, N.: A numerical method for structural dynamics. Journal of Engineering Mechanics (ASCE) 85 (1959) 67-94
[26] Hughes, T.: The finite element method. Dover Publications (2000) · Zbl 1191.74002
[27] Maute, A.: Fehlerkontrolle bei Finite-Element-Methoden in der linearen Strukturdynamik. Dissertation, Institut für Baustatik, Universität Stuttgart (2001)
[28] Neumann, J.: Anwendung von adaptiven Finite Element Algorithmen auf Probleme der Strukturdynamik. Dissertation, Institut für Mechanik, Universität Karlsruhe (2004)
[29] Wriggers, P.: Nichtlineare Finite-Element Methoden. Springer-Verlag (2001) · Zbl 0972.74002
[30] Cris.eld, M.: Non-linear finite element analysis of solids and structures, Volume 2. John Wiley&Sons (1997)
[31] Heißerer, U.: Solution of the semidiscrete equations of structural dynamics by the generalized-alpha method and its implementation in a p-FEM code. Diploma thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieurwesen, TU-München (2001)
[32] Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\'a\) method. Computer Methods in Applied Mechanics and Engineering 149 (1997) 33-48 · Zbl 0918.73130
[33] Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering&Structural Dynamics 5 (1977) 283-292
[34] Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modi.cation of Newmark’s method. International Journal for Numerical Methods in Engineering 5 (1981) 1562-1566 · Zbl 0441.73106
[35] Yosibash, Z., Kirby, R.: Dynamic response of various von-Kármán non-linear plate models and their 3-d counterparts. International Journal of Solids and Structures 42 (2004) 2517-2531 · Zbl 1165.74328
[36] Kirby, R., Yosibash, Z.: Solution of von-Kármán dynamic non-linear plate equations using a pseudo-spectral method. Computer Methods in Applied Mechanics and Engineering 193 (2004) 575-599 · Zbl 1060.74660
[37] Li, X., Zeng, L., Wiberg, N.E.: A simple local error estimator and adaptive time-stepping procedure for direct integration method in dynamical analysis. Communications in Numerical Methods in Engineering 9 (1993) 273-292 · Zbl 0777.73079
[38] Riccius, J., Schweizerhof, K.: Aspects of hierarchical \(h\)-adaptive dynamic analyses. In Topping, B., ed.: Third International Conference on Computational Structures Technology, Budapest, Hungary, Civil-Comp Press (1996)
[39] Wiberg, N.E., Li, X.: A postprocessing technique and an a-posteriori error estimate for the Newmark method in dynamic analysis. Earthquake Engineering&Structural Dynamics 22 (1993) 465-489
[40] Zienkiewicz, O., Xie, Y.: A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthquake Engineering&Structural Dynamics 20 (1991) 871-887
[41] Schwarz, H.: FORTRAN-Programme zur Methode der Finiten Elemente. 3. edn. B.G. Teubner (1991)
[42] Schwarz, H.: Methode der finiten Elemente. 3. edn. B.G. Teubner (1991)
[43] Rabold, A.: Vorbereitende Arbeiten zur Berechnung der Trittschalldämmung von Holzbalkendecken anhand der Finiten Elemente Methode. Diploma thesis, Lehrstuhl für Bauinformatik, TU München (2004)
[44] Farhat, C., Lesoinne, M., Le Tallec, P.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering 157 (1998) 95-114 · Zbl 0951.74015
[45] Flemisch, B., Kaltenbacher, M., Wohlmuth, B.: Elasto-Acoustic and Acoustic- Acoustic Coupling on Nonmatching Grids. Submitted to International Journal for Numerical Methods in Engineering (2005) · Zbl 1127.74042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.