×

Modeling of fluid-structure interactions with the space-time techniques. (English) Zbl 1323.74096

Bungartz, Hans-Joachim (ed.) et al., Fluid-structure interaction. Modelling, simulation, optimisation. Proceedings of the workshop, Hohenwart, Germany, October 2005. Berlin: Springer (ISBN 3-540-34595-7/pbk). Lecture Notes in Computational Science and Engineering 53, 50-81 (2006).
Summary: We provide an overview of the space-time finite element techniques developed by the Team for Advanced Flow Simulation and Modeling (T\(\bigstar\)AFSM) for modeling of fluid-structure interaction problems. The core method is the Deforming- Spatial-Domain/Stabilized Space-Time formulation, complemented with the mesh update methods, including the Solid-Extension Mesh Moving Technique and Move- Reconnect-Renode Mesh Update Method. Also complementing the core method are the block-iterative, quasi-direct and direct coupling methods for the solution of the fully-discretized, coupled fluid and structural mechanics equations. Additionally, the Surface-Edge-Node Contact Tracking technique is introduced as a contact algorithm for the purpose of protecting the quality of the fluid mechanics mesh between the structural surfaces coming into contact. We present mesh-moving tests and numerical examples with incompressible flows and membrane and cable structures.
For the entire collection see [Zbl 1097.76002].

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] T.J.R Hughes, W.K. Liu, and T.K. Zimmermann, ”Lagrangian-Eulerian finite element formulation for incompressible viscous flows”, \(Computer Methods in Applied Mechanics and Engineering\), 29 (1981) 329-349. · Zbl 0482.76039
[2] T.E. Tezduyar, ”Stabilized finite element formulations for incompressible flow computations”, \(Advances in Applied Mechanics\), 28 (1992) 1-44. · Zbl 0747.76069
[3] T.E. Tezduyar, M. Behr, and J. Liou, ”A new strategy for finite element computations involving moving boundaries and interfaces - the deformingspatial- domain/space-time procedure: I. The concept and the preliminary numerical tests”, \(Computer Methods in Applied Mechanics and Engineering\), 94 (1992) 339-351. · Zbl 0745.76044
[4] T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou, ”A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. Computation of freesurface flows, two-liquid flows, and flows with drifting cylinders”, \(Computer Methods in Applied Mechanics and Engineering\), 94 (1992) 353-371. · Zbl 0745.76045
[5] T.J.R. Hughes and A.N. Brooks, ”A multi-dimensional upwind scheme with no crosswind diffusion”, in T.J.R. Hughes, editor, \(Finite Element Methods for Convection Dominated Flows\), AMD-Vol.34, 19-35, ASME, New York, 1979.
[6] A.N. Brooks and T.J.R. Hughes, ”Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, \(Computer Methods in Applied Mechanics and Engineering\), 32 (1982) 199-259. · Zbl 0497.76041
[7] T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih, ”Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocitypressure elements”, \(Computer Methods in Applied Mechanics and Engineering\), 95 (1992) 221-242. · Zbl 0756.76048
[8] T.J.R. Hughes, L.P. Franca, and M. Balestra, ”A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations”, \(Computer Methods in Applied Mechanics and Engineering\), 59 (1986) 85-99. · Zbl 0622.76077
[9] T.J.R. Hughes and G.M. Hulbert, ”Space-time finite element methods for elastodynamics: formulations and error estimates”, \(Computer Methods in Applied Mechanics and Engineering\), 66 (1988) 339-363. · Zbl 0616.73063
[10] T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, ”Space-time techniques for finite element computation of flows with moving boundaries and interfaces”, in S. Gallegos, I. Herrera, S. Botello, F. Zarate, and G. Ayala, editors, \(Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science\), CD-ROM, 2004. · Zbl 1118.74052
[11] T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, ”Space-time finite element techniques for computation of fluid-structure interactions”, \(Computer Methods in Applied Mechanics and Engineering\), 195 (2006) 2002-2027. · Zbl 1118.74052
[12] T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, ”Computation of unsteady incompressible flows with the finite element methods - Space-time formulations, iterative strategies and massively parallel implementations”, in \(New Methods in Transient Analysis\), PVP-Vol.246/AMD-Vol.143, ASME, New York, (1992) 7-24.
[13] A.A. Johnson and T.E. Tezduyar, ”Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces”, \(Computer Methods in Applied Mechanics and Engineering\), 119 (1994) 73-94. · Zbl 0848.76036
[14] T.E. Tezduyar, ”Finite element methods for flow problems with moving boundaries and interfaces”, \(Archives of Computational Methods in Engineering\), 8 (2001) 83-130. · Zbl 1039.76037
[15] A. Masud and T.J.R. Hughes, ”A Space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems”, \(Computer Methods in Applied Mechanics and Engineering\), 146 (1997) 91-126. · Zbl 0899.76259
[16] S. Mittal and T.E. Tezduyar, ”A finite element study of incompressible flows past oscillating cylinders and aerofoils”, \(International Journal for Numerical Methods in Fluids\), 15 (1992) 1073-1118.
[17] S. Mittal and T.E. Tezduyar, ”Parallel finite element simulation of 3D incompressible flows - Fluid-structure interactions”, \(International Journal for Numerical Methods in Fluids\), 21 (1995) 933-953. · Zbl 0873.76047
[18] K.R. Stein, R.J. Benney, V. Kalro, A.A. Johnson, and T.E. Tezduyar, ”Parallel computation of parachute fluid-structure interactions”, in \(Proceedings of AIAA 14th Aerodynamic Decelerator Systems Technology Conference\), AIAA Paper 97-1505, San Francisco, California, (1997).
[19] K. Stein, R. Benney, T. Tezduyar, V. Kalro, J. Leonard, and M. Accorsi, ”3-d computation of parachute fluid-structure interactions: Performance and control”, in \(Proceedings of CEAS/AIAA 15th Aerodynamic Decelerator Systems Technology Conference\), AIAA Paper 99-1714, Toulouse, France, (1999). · Zbl 0973.76055
[20] K. Stein, R. Benney, T. Tezduyar, V. Kalro, J. Potvin, and T. Bretl, ”3-d computation of parachute fluid-structure interactions: Performance and control”, in \(Proceedings of CEAS/AIAA 15th Aerodynamic Decelerator Systems Technology Conference\), AIAA Paper 99-1725, Toulouse, France, (1999).
[21] K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, and M. Accorsi, ”Parachute fluid-structure interactions: 3-D Computation”, \(Computer Methods in Applied Mechanics and Engineering\), 190 (2000) 373-386. · Zbl 0973.76055
[22] V. Kalro and T.E. Tezduyar, ”A parallel 3D computational method for fluid- structure interactions in parachute systems”, \(Computer Methods in Applied Mechanics and Engineering\), 190 (2000) 321-332. · Zbl 0993.76044
[23] K. Stein, R. Benney, T. Tezduyar, and J. Potvin, ”Fluid-structure interactions of a cross parachute: Numerical simulation”, \(Computer Methods in Applied Mechanics and Engineering\), 191 (2001) 673-687. · Zbl 0999.76085
[24] T. Tezduyar and Y. Osawa, ”Fluid-structure interactions of a parachute crossing the far wake of an aircraft”, \(Computer Methods in Applied Mechanics and Engineering\), 191 (2001) 717-726. · Zbl 1113.76407
[25] K.R. Stein, R.J. Benney, T.E. Tezduyar, J.W. Leonard, and M.L. Accorsi, ”Fluid-structure interactions of a round parachute: Modeling and simulation techniques”, \(Journal of Aircraft\), 38 (2001) 800-808.
[26] K. Stein, T. Tezduyar, and R. Benney, ”Mesh moving techniques for fluid- structure interactions with large displacements”, \(Journal of Applied Mechanics\), 70 (2003) 58-63. · Zbl 1110.74689
[27] T. Tezduyar, ”Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces”, in \(Proceedings of the ASME Symposium on Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows (CD-ROM)\), ASME Paper IMECE2001/HTD-24206, ASME, New York, New York, (2001).
[28] T.E. Tezduyar, ”Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows”, in M.M. Hafez, editor, \(Numerical Simulations of Incompressible Flows\), World Scientific, New Jersey, (2003) 221-239. · Zbl 1059.76038
[29] K. Stein, T. Tezduyar, and R. Benney, ”Computational methods for modeling parachute systems”, \(Computing in Science and Engineering\), 5 (2003) 39-46. · Zbl 05091644
[30] K. Stein, T.E. Tezduyar, and R. Benney, ”Automatic mesh update with the solid-extension mesh moving technique”, \(Computer Methods in Applied Mechanics and Engineering\), 193 (2004) 2019-2032. · Zbl 1067.74587
[31] T.E. Tezduyar, S. Sathe, M. Senga, L. Aureli, K. Stein, and B. Griffin, ”Finite element modeling of fluid-structure interactions with Space-time and advanced mesh update techniques”, in \(Proceedings of the 10th International Conference on Numerical Methods in Continuum Mechanics (CD-ROM)\), Zilina, Slovakia, (2005).
[32] S. Sathe, \(Enhanced-Discretization and Solution Techniques in Flow Simulations and Parachute Fluid-Structure Interactions\), Ph.D. thesis, Rice University, 2004.
[33] T.E. Tezduyar, ”Finite element methods for fluid dynamics with moving boundaries and interfaces”, in E. Stein, R. De Borst, and T.J.R. Hughes, editors, \(Encyclopedia of Computational Mechanics\), Volume 3: Fluids, Chapter 17, John Wiley & Sons, 2004. · Zbl 1130.76369
[34] R. Ohayon, ”Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems”, \(Computer Methods in Applied Mechanics and Engineering\), 190 (2001) 3009-3019. · Zbl 0971.74032
[35] W. Wall, \(Fluid-Structure Interaction with Stabilized Finite Elements\), Ph.D. thesis, University of Stuttgart, 1999.
[36] A. Sameh and V. Sarin, ”Hybrid parallel linear solvers”, \(International Journal of Computational Fluid Dynamics\), 12 (1999) 213-223. · Zbl 0969.76048
[37] A. Sameh and V. Sarin, ”Parallel algorithms for indefinite linear systems”, \(Parallel Computing\), 28 (2002) 285-299. · Zbl 0984.68201
[38] M. Heil, ”An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems”, \(Computer Methods in Applied Mechanics and Engineering\), 193 (2004) 1-23. · Zbl 1137.74439
[39] B. Hubner, E. Walhorn, and D. Dinkler, ”A monolithic approach to fluid-structure interaction using Space-time finite elements”, \(Computer Methods in Applied Mechanics and Engineering\), 193 (2004) 2087-2104. · Zbl 1067.74575
[40] W. Dettmer, \(Finite Element Modeling of Fluid Flow with Moving Free Surfaces and Interfaces Including Fluid-Solid Interaction\), Ph.D. thesis, University of Wales Swansea, 2004.
[41] W. Dettmer and D. Peric, ”A computational framework for fluid-rigid body interaction: finite element formulation and applications”, to appear in \(Computer Methods in Applied Mechanics and Engineering\), 2005.
[42] S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti, M. Senga, K. Stein, and T.E. Tezduyar, ”Fluid-structure interaction modeling of complex parachute designs with the Space-time finite element techniques”, \(Computers & Fluids\), published online, December 2005. · Zbl 1124.76033
[43] A.E. Green and J.E. Adkins, \(Large Elastic Deformations\). Oxford Clarendon Press, Amen House, London, U.K., 1960. · Zbl 0090.17501
[44] A.E. Green and W. Zerna, \(Theoretical Elasticity\). Oxford Clarendon Press, Ely House, London, U.K., 1968. · Zbl 0155.51801
[45] M.L. Accorsi, J.W. Leonard, R. Benney, and K. Stein, ”Structural modeling of parachute dynamics”, \(AIAA Journal\), 38 (2000) 139-146.
[46] T.E. Tezduyar and Y. Osawa, ”Finite element stabilization parameters computed from element matrices and vectors”, \(Computer Methods in Applied Mechanics and Engineering\), 190 (2000) 411-430. · Zbl 0973.76057
[47] T.E. Tezduyar, ”Computation of moving boundaries and interfaces and stabilization parameters”, \(International Journal for Numerical Methods in Fluids\), 43 (2003) 555-575. · Zbl 1032.76605
[48] H.M. Hilber, T.J.R. Hughes, and R.L. Taylor, ”Improved numerical dissipation for time integration algorithms in structural dynamics”, \(Earthquake Engineering and Structural Dynamics\), 5 (1977) 283-292.
[49] D.R. Lynch, ”Wakes in liquid-liquid systems”, \(Journal of Computational Physics\), 47 (1982) 387-411. · Zbl 0486.65063
[50] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, ”Parallel finite element computation of 3D flows”, \(Computer\), 26 (1993) 27-36. · Zbl 05090697
[51] K. Stein and T. Tezduyar, ”Advanced mesh update techniques for problems involving large displacements”, in \(Proceedings of the Fifth World Congress on Computational Mechanics\), On-line publication: http://​wccm.​tuwien.​ac.​at/​, Paper-ID: 81489, Vienna, Austria, (2002).
[52] A.A. Johnson and T.E. Tezduyar, ”Simulation of multiple spheres falling in a liquid-filled tube”, \(Computer Methods in Applied Mechanics and Engineering\), 134 (1996) 351-373. · Zbl 0895.76046
[53] T. Fujisawa, M. Inaba, and G. Yagawa, ”Parallel computing of high-speed compressible flows using a node-based finite element method”, \(International Journal for Numerical Methods in Fluids\), 58 (2003) 481-511. · Zbl 1032.76594
[54] Y. Saad and M. Schultz, ”GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, \(SIAM Journal of Scientific and Statistical Computing\), 7 (1986) 856-869. · Zbl 0599.65018
[55] T.E. Tezduyar, ”Stabilized finite element methods for computation of flows with moving boundaries and interfaces”, in \(Lecture Notes on Finite Element Simulation of Flow Problems (Basic - Advanced Course)\), Japan Society of Computational Engineering and Sciences, Tokyo, Japan, (2003).
[56] T.E. Tezduyar, S. Sathe, and K. Stein, ”Solution techniques for the fullydiscretized equations in computation of fluid-structure interactions with the Space-time formulations”, \(Computer Methods in Applied Mechanics and Engineering\), published online, January 2006. · Zbl 1123.76035
[57] T. Hisada, H. Watanabe, and S. Sugiura. ”Fluid-structure interaction analysis of human heart by ALE finite element method”, 2003, presentation at the Seventh US National Congress on Computational Mechanics, Albuquerque, New Mexico.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.