An a posteriori certification algorithm for Newton homotopies. (English) Zbl 1325.65074

Nabeshima, Katsusuke (ed.), Proceedings of the 39th international symposium on symbolic and algebraic computation, ISSAC 2014, Kobe, Japan, July 23–25, 2014. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-4503-2501-1). 248-255 (2014).


65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations
13P15 Solving polynomial systems; resultants
68T40 Artificial intelligence for robotics
68W30 Symbolic computation and algebraic computation


Full Text: DOI


[1] T. Arai. Mathematical Logic. Iwanami Shoten, 2011. (in Japanese).
[2] A. Church. A note on the Entscheidungsproblem. Journal of Symbolic Logic, 1:40 41, 1936. · JFM 62.1058.04
[3] G. E. Collins. Quanti.er elimination for real closed .elds by cylindrical algebraic decomposition. In Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, volume 33 of Lecture Notes in Computer Science, pages 134 183. Springer-Verlag, 1975. \"{}
[4] K. G\"{}odel. Uber formal unentscheidbare S\"{} atze der Principia Mathematica und verwandter Systeme I. Monatshefte f\"{} ur Mathematik, 38(1):173 198, 1931. · JFM 57.0054.02
[5] T. C. Hales. The Jordan curve theorem, formally and informally. The American Mathematical Monthly, 114(10):882 894, 2007. · Zbl 1137.03305
[6] H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An e.ective implementation of symbolic-numeric cylindrical algebraic decomposition for quanti.er elimination. Theoretical Computer Science, 479:43 69, 2013. · Zbl 1291.68433
[7] T.Matsuzaki,H.Iwane,H.Anai,andN.Arai. The complexity of math problems linguistic, or computational? In Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 73 81, 2013.
[8] T.Matsuzaki,H.Iwane,H.Anai,andN.H.Arai.The most uncreative examinee: a .rst step toward wide coverage natural language math problem solving. In Proceedings of the 28th AAAI Conference on Arti.cial Intelligence, 2014. (to appear).
[9] J. Robinson. De.nability and decision problems in arithmetic. The Journal of Symbolic Logic, 14(2):98 114, 1949. · Zbl 0034.00801
[10] M. Steedman. The Syntactic Process. Bradford Books. Mit Press, 2001.
[11] A. W. Strzebo\'{}nski. Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Computation, 41(9):1021 1038, 2006. · Zbl 1124.68123
[12] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley, 1951. · Zbl 0044.25102
[13] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230 265, 1936. · Zbl 0016.09701
[14] A. N. Whitehead and B. A. W. Russell. Principia Mathematica. Cambridge Univ. Press, Cambridge, 1910, 1912, and 1913.
[15] L. Wittgenstein. Philosophical Investigations / Philosophische Untersuchungen. Oxford: Basil Blackwell, 1953. · Zbl 1028.03003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.