×

Transient computational homogenization for heterogeneous materials under dynamic excitation. (English) Zbl 1325.74125

J. Mech. Phys. Solids 61, No. 11, 2125-2146 (2013); corrigendum ibid. 64, 483 (2014).
Summary: This paper presents a novel transient computational homogenization procedure that is suitable for the modelling of the evolution in space and in time of materials with non-steady state microstructure, such as metamaterials. This transient scheme is an extension of the classical (first-order) computational homogenization framework. It is based on an enriched description of the micro-macro kinematics by allowing large spatial fluctuations of the microscopic displacement field in contrast to the macroscopic displacement field, as a result of possible transient phenomena. From the microstructural analysis, the macroscopic stress and the macroscopic linear momentum are obtained from an extended Hill-Mandel macrohomogeneity condition. In particular, the full balance of linear momentum is solved at both scales. Consistent time discretization towards the numerical implementation of the framework as well as a condensed formulation for linear elasticity are provided to ensure a more efficient calculation of the effective response. As an example, the transient computational homogenization approach is applied to the multi-scale analysis of a metamaterial subjected to dynamic uniaxial loading. Consistency of the framework with respect to Direct Numerical Simulations is shown for a large range of loading frequencies and microstructural sizes. Attenuation of the macroscopic waves at specific loading frequencies as well as size effects are highlighted.

MSC:

74Q20 Bounds on effective properties in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
74N15 Analysis of microstructure in solids
74Q05 Homogenization in equilibrium problems of solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auriault, J. L.; Boutin, C., Long wavelength inner-resonance cut-off frequencies in elastic composite materials, Int. J. Solids Struct., 49, 23-24, 3269-3281 (2012)
[3] Boutin, C.; Auriault, J., Rayleigh scattering in elastic composite materials, Int. J. Eng. Sci., 31, 12, 1669-1689 (1993) · Zbl 0780.73021
[4] Coenen, E.; Kouznetsova, V.; Geers, M., Multi-scale continuous-discontinuous framework for computational-homogenization localization, J. Mech. Phys. Solids, 60, 8, 1486-1507 (2012)
[5] Coenen, E.; Kouznetsova, V.; Geers, M., Novel boundary conditions for strain localization analyses in microstructural volume elements, Int. J. Numer. Methods Eng., 90, 1, 1-21 (2012) · Zbl 1242.74083
[6] Costanzo, F.; Gray, G.; Andia, P., On the definitions of effective stress and deformation gradient for use in MDHill’s macro-homogeneity and the virial theorem, Int. J. Eng. Sci., 43, 7, 533-555 (2005) · Zbl 1211.74181
[7] Craster, R. V.; Kaplunov, J.; Pichugin, A. V., High-frequency homogenization for periodic media, Proc. R. Soc. AMath. Phys. Eng. Sci., 466, 2120, 2341-2362 (2010) · Zbl 1196.35038
[8] (Deymier, E., Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid-State Sciences, vol. 173 (2013), Springer)
[9] Ding, Y.; Liu, Z.; Qiu, C.; Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., 99, August, 093904 (2007)
[10] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater., 5, 452-456 (2006)
[11] Feyel, F.; Chaboche, J.-L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Eng., 183, 3-4, 309-330 (2000) · Zbl 0993.74062
[12] Fish, J.; Filonova, V.; Kuznetsov, S., Micro-inertia effects in nonlinear heterogeneous media, Int. J. Numer. Methods Eng., 91, 13, 1406-1426 (2012)
[13] Geers, M.; Kouznetsova, V.; Brekelmans, W., Multi-scale computational homogenizationtrends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182 (2010) · Zbl 1402.74107
[14] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 2, 127-140 (1963) · Zbl 0108.36902
[15] Hauret, P.; Le Tallec, P., Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Eng., 195, 37-40, 4890-4916 (2006) · Zbl 1177.74379
[16] Hill, R., Elastic properties of reinforced solidssome theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[17] Joannopoulos, J.; Villeneuve, P.; Fan, S., Photonic crystals, Solid State Commun., 102, 2-3, 165-173 (1997)
[18] Kohn, R.; Shipman, S., Magnetism and homogenization of microresonators, Multiscale Model. Simul., 7, 1, 62-92 (2008) · Zbl 1159.78350
[19] Kouznetsova, V.; Geers, M.; Brekelmans, W., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J. Numer. Methods Eng., 54, 8, 1235-1260 (2002) · Zbl 1058.74070
[20] Kouznetsova, V.; Geers, M.; Brekelmans, W., Multi-scale second-order computational homogenization of multi-phase materialsa nested finite element solution strategy, Comput. Methods Appl. Mech. Eng., 193, 48-51, 5525-5550 (2004) · Zbl 1112.74469
[21] Kushwaha, M. S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., 71, 2022-2025 (1993)
[22] Larsson, F.; Runesson, K.; Su, F., Variationally consistent computational homogenization of transient heat flow, Int. J. Numer. Methods Eng., 81, 13, 1659-1686 (2010) · Zbl 1183.80109
[23] Liu, Z.; Chan, C. T.; Sheng, P.; Goertzen, A.; Page, J., Elastic wave scattering by periodic structures of spherical objectstheory and experiment, Phys. Rev. B, 62, 2446-2457 (2000)
[24] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.; Yang, Z.; Chan, C.; Sheng, P., Locally resonant sonic materials, Science, 289, 5485, 1734-1736 (2000)
[25] Miehe, C.; Schröder, J.; Schotte, J., Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials, Comput. Methods Appl. Mech. Eng., 171, 3-4, 387-418 (1999) · Zbl 0982.74068
[26] Milton, G., New metamaterials with macroscopic behavior outside that of continuum elastodynamics, New J. Phys., 359, 9 (2007)
[27] Milton, G.; Willis, J., On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. AMath. Phys. Eng. Sci., 463, 2079, 855-880 (2007) · Zbl 1347.74080
[28] Nemat-Nasser, S.; Srivastava, A., Overall dynamic constitutive relations of layered elastic composites, J. Mech. Phys. Solids, 59, 10, 1953-1965 (2011) · Zbl 1270.74168
[29] Nemat-Nasser, S.; Srivastava, A., Bounds on effective dynamic properties of elastic composites, J. Mech. Phys. Solids, 61, 1, 254-264 (2013)
[30] Nolde, E.; Craster, R.; Kaplunov, J., High frequency homogenization for structural mechanics, J. Mech. Phys. Solids, 59, 3, 651-671 (2011) · Zbl 1270.74166
[31] Ozdemir, I.; Brekelmans, W.; Geers, M., Computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Comput. Methods Appl. Mech. Eng., 198, 3-4, 602-613 (2008) · Zbl 1228.74065
[34] Suquet, P., Elements of homogenization for inelastic solid mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media. Lecture Notes in Physics, vol. 272 (1987), Springer: Springer Berlin/Heidelberg), 193-198
[35] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 2285-2311 (2000) · Zbl 0991.74056
[36] van der Sluis, O.; Schreurs, P.; Brekelmans, W.; Meijer, H., Overall behaviour of heterogeneous elastoviscoplastic materialseffect of microstructural modelling, Mech. Mater., 32, 449-462 (2000)
[37] Willis, J., Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 3, 185-202 (1977) · Zbl 0363.73014
[38] Willis, J., Variational principles for dynamic problems for inhomogeneous elastic media, Wave Motion, 3, 1-11 (1981) · Zbl 0453.73004
[39] Willis, J., Exact effective relations for dynamics of a laminated body, Mech. Mater., 41, 4, 385-393 (2009)
[40] Zhou, X.; Hu, G., Analytic model of elastic metamaterials with local resonances, Phys. Rev. B, 79, 195109 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.