Moroz, Vitaly; Van Schaftingen, Jean Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1326.35109 Commun. Contemp. Math. 17, No. 5, Article ID 1550005, 12 p. (2015). Cited in 1 ReviewCited in 115 Documents MSC: 35J20 Variational methods for second-order elliptic equations 35B33 Critical exponents in context of PDEs 35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian 35Q55 NLS equations (nonlinear Schrödinger equations) Keywords:Choquard equation; Hartree equation; nonlinear Schrödinger equation; nonlocal problem; Riesz potential; Hardy-Littlewood-Sobolev inequality; lower critical exponent; strict inequality; concentration-compactness; concentration at infinity PDF BibTeX XML Cite \textit{V. Moroz} and \textit{J. Van Schaftingen}, Commun. Contemp. Math. 17, No. 5, Article ID 1550005, 12 p. (2015; Zbl 1326.35109) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.2307/2044999 · Zbl 0526.46037 [2] DOI: 10.1007/s00033-011-0166-8 · Zbl 1247.35141 [3] Cingolani S., Differential Integral Equations 26 pp 867– (2013) [4] DOI: 10.1017/S0308210509000584 · Zbl 1215.35146 [5] DOI: 10.1016/j.jmaa.2013.04.081 · Zbl 1310.35114 [6] Devreese J. T., Springer Series in Solid-State Sciences 159, in: Advances in Polaron Physics (2010) [7] DOI: 10.1071/PH951055 [8] DOI: 10.1002/sapm197757293 · Zbl 0369.35022 [9] DOI: 10.2307/2007032 · Zbl 0527.42011 [10] DOI: 10.1090/gsm/014 [11] DOI: 10.1016/0362-546X(80)90016-4 · Zbl 0453.47042 [12] Lions P.-L., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 pp 109– (1984) [13] DOI: 10.1007/s00205-008-0208-3 · Zbl 1185.35260 [14] DOI: 10.1017/S0308210500012191 · Zbl 0449.35034 [15] Menzala G. P., Funkcial. Ekvac. 26 pp 231– (1983) [16] DOI: 10.1088/0264-9381/15/9/019 · Zbl 0936.83037 [17] DOI: 10.1016/j.jde.2012.12.019 · Zbl 1266.35083 [18] DOI: 10.1016/j.jfa.2013.04.007 · Zbl 1285.35048 [19] Pekar S., Untersuchung über die Elektronentheorie der Kristalle (1954) [20] DOI: 10.1007/978-1-4614-7004-5 · Zbl 1284.46001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.