×

Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1326.35109


MSC:

35J20 Variational methods for second-order elliptic equations
35B33 Critical exponents in context of PDEs
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.2307/2044999 · Zbl 0526.46037
[2] DOI: 10.1007/s00033-011-0166-8 · Zbl 1247.35141
[3] Cingolani S., Differential Integral Equations 26 pp 867– (2013)
[4] DOI: 10.1017/S0308210509000584 · Zbl 1215.35146
[5] DOI: 10.1016/j.jmaa.2013.04.081 · Zbl 1310.35114
[6] Devreese J. T., Springer Series in Solid-State Sciences 159, in: Advances in Polaron Physics (2010)
[7] DOI: 10.1071/PH951055
[8] DOI: 10.1002/sapm197757293 · Zbl 0369.35022
[9] DOI: 10.2307/2007032 · Zbl 0527.42011
[10] DOI: 10.1090/gsm/014
[11] DOI: 10.1016/0362-546X(80)90016-4 · Zbl 0453.47042
[12] Lions P.-L., Ann. Inst. H. Poincaré Anal. Non Linéaire 1 pp 109– (1984)
[13] DOI: 10.1007/s00205-008-0208-3 · Zbl 1185.35260
[14] DOI: 10.1017/S0308210500012191 · Zbl 0449.35034
[15] Menzala G. P., Funkcial. Ekvac. 26 pp 231– (1983)
[16] DOI: 10.1088/0264-9381/15/9/019 · Zbl 0936.83037
[17] DOI: 10.1016/j.jde.2012.12.019 · Zbl 1266.35083
[18] DOI: 10.1016/j.jfa.2013.04.007 · Zbl 1285.35048
[19] Pekar S., Untersuchung über die Elektronentheorie der Kristalle (1954)
[20] DOI: 10.1007/978-1-4614-7004-5 · Zbl 1284.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.