zbMATH — the first resource for mathematics

A nonmonotone filter SQP method: local convergence and numerical results. (English) Zbl 1326.49042

49M05 Numerical methods based on necessary conditions
49M15 Newton-type methods
90C55 Methods of successive quadratic programming type
65K05 Numerical mathematical programming methods
65K10 Numerical optimization and variational techniques
90C30 Nonlinear programming
90C26 Nonconvex programming, global optimization
PDF BibTeX Cite
Full Text: DOI
[1] E. G. Birgin, R. Castillo, and J. M. Martínez, Numerical comparison of augmented Lagrangian algorithms for nonconvex problems, Comput. Optim. Appl., 31 (2005), pp. 31–55. · Zbl 1101.90066
[2] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numer., 4 (1995), pp. 1–51. · Zbl 0828.65060
[3] R. H. Byrd, F. E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for nonlinear optimization, SIAM J. Optim., 20 (2010), pp. 2281–2299. · Zbl 1211.90179
[4] R. H. Byrd, G. Lopez-Calva, and J. Nocedal, A line search exact penalty method using steering rules, Math. Program., 133 (2012), pp. 39–73. · Zbl 1254.90221
[5] R. Chamberlain, M. Powell, C. Lemarechal, and H. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization, in Algorithms for Constrained Minimization of Smooth Nonlinear Functions, Springer, New York, 1982, pp. 1–17. · Zbl 0477.90072
[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal., 28 (1991), pp. 545–572. · Zbl 0724.65067
[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Numerical experiments with the LANCELOT package (Release A) for large-scale nonlinear optimization, Math. Program., 73 (1996), pp. 73–110. · Zbl 0848.90109
[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, SIAM, Philadelphia, 2000.
[9] F. E. Curtis, N. I. M. Gould, D. P. Robinson, and Ph. L. Toint, An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization, preprint, RAL-P-2014-001, 2014.
[10] F. E. Curtis, H. Jiang, and D. P. Robinson, An adaptive augmented Lagrangian method for large-scale constrained optimization, Math. Program., 151 (2015), pp. 201–245. · Zbl 1323.49015
[11] F. E. Curtis, T. Johnson, D. P. Robinson, and A. Wächter, An inexact sequential quadratic optimization algorithm for large-scale nonlinear optimization, SIAM J. Optim., 24 (2014), pp. 1041–1074. · Zbl 1311.90184
[12] F. E. Curtis and J. Nocedal, Flexible penalty functions for nonlinear constrained optimization, IMA J. Numer. Anal., 28 (2008), pp. 749–769. · Zbl 1156.65058
[13] F. E. Curtis, O. Schenk, and A. Wächter, An interior-point algorithm for large-scale nonlinear optimization with inexact step computations, SIAM J. Sci. Comput., 32 (2010), pp. 3447–3475. · Zbl 1220.49018
[14] J. Dennis and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28 (1974), pp. 549–560. · Zbl 0282.65042
[15] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM J. Control Optim., 27 (1989), pp. 1333–1360. · Zbl 0681.49035
[16] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201–213. · Zbl 1049.90004
[17] R. Fletcher, An \(ℓ_1\) penalty method for nonlinear constraints, in Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., SIAM, Philadelphia, 1985, pp. 26–40.
[18] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program., 91 (2002), pp. 239–269. · Zbl 1049.90088
[19] R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13 (2002), pp. 44–59. · Zbl 1029.65063
[20] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A Stabilized SQP Method: Global Convergence, Center for Computational Mathematics Report CCoM 13-04, University of California, San Diego, 2013.
[21] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A Stabilized SQP Method: Superlinear Convergence, Center for Computational Mathematics Report CCoM 14-01, University of California, San Diego, 2014.
[22] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005), pp. 99–131. · Zbl 1210.90176
[23] P. E. Gill and D. P. Robinson, A primal-dual augmented Lagrangian, Comput. Optim. Appl., 51 (2012), pp. 1–25. · Zbl 1244.90219
[24] P. E. Gill and D. P. Robinson, A globally convergent stabilized SQP method, SIAM J. Optim., 23 (2013), pp. 1983–2010. · Zbl 1285.49023
[25] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEst: A constrained and unconstrained testing environment with safe threads for mathematical optimization, Comput. Optim. Appl., 60 (2015), pp. 545–557. · Zbl 1325.90004
[26] N. I. M. Gould, Y. Loh, and D. P. Robinson, A filter method with unified step computation for nonlinear optimization, SIAM J. Optim., 24 (2014), pp. 175–209. · Zbl 1301.49070
[27] N. I. M. Gould, Y. Loh, and D. P. Robinson, A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results, preprint, RAL-P-2014-012R, 2014.
[28] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Global convergence, SIAM J. Optim., 20 (2010), pp. 2023–2048. · Zbl 1202.49039
[29] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Local convergence and practical issues, SIAM J. Optim., 20 (2010), pp. 2049–2079. · Zbl 1202.49040
[30] N. I. M. Gould and D. P. Robinson, A second derivative SQP method with a “trust-region-free” predictor step, IMA J. Numer. Anal., 32 (2012), pp. 580–601. · Zbl 1246.65089
[31] N. I. M. Gould and Ph. L. Toint, Global convergence of a non-monotone trust-region SQP-filter algorithm for nonlinear programming, in Multiscale Optimization Methods and Applications, W. Hager and O. A. Prokopyev, eds., Kluwer Academic, Dordrecht, The Netherlands, 2005.
[32] L. Grippo, F. Lampariello, and S. Lucidi, A class of nonmonotone stabilization methods in unconstrained optimization, Numer. Math., 59 (1991), pp. 779–805. · Zbl 0724.90060
[33] IBM, ILOG CPLEX: High-Performance Software for Mathematical Programming and Optimization, 2006.
[34] M. Kočvara and M. Stingl, PENNON: A generalized augmented Lagrangian method for semidefinite programming, in High Performance Algorithms and Software for Nonlinear Optimization, Appl. Optim. 82, Kluwer Academic, Dordrecht, The Netherlands, 2003, pp. 303–321. · Zbl 1044.90082
[35] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), pp. 503–528. · Zbl 0696.90048
[36] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), pp. 37–47. · Zbl 0149.16701
[37] N. Maratos, Exact Penalty Function Algorithms for Finite-Dimensional and Control Optimization Problems, Ph.D. thesis, Department of Computing and Control, University of London, 1978.
[38] J. Morales, J. Nocedal, and Y. Wu, A sequential quadratic programming algorithm with an additional equality constrained phase, IMA J. Numer. Anal., 32 (2012), pp. 553–579. · Zbl 1246.65093
[39] M. J. D. Powell and Y.-X. Yuan, A recursive quadratic programming algorithm that uses differentiable exact penalty functions, Math. Program., 35 (1986), pp. 265–278. · Zbl 0598.90079
[40] C. Shen, S. Leyffer, and R. Fletcher, A nonmonotone filter method for nonlinear optimization, Comput. Optim. Appl., 52 (2012), pp. 583–607. · Zbl 1259.90140
[41] K. Su and D. Pu, A nonmonotone filter trust region method for nonlinear constrained optimization, J. Comput. Appl. Math., 223 (2009), pp. 230–239. · Zbl 1180.65081
[42] M. Ulbrich, S. Ulbrich, and L. Vicente, A globally convergent primal-dual interior-point filter method for nonlinear programming, Math. Program., 100 (2004), pp. 379–410. · Zbl 1070.90110
[43] S. Ulbrich, On the superlinear local convergence of a filter-SQP method, Math. Program., 100 (2004), pp. 217–245. · Zbl 1146.90525
[44] A. Wachter and L. T. Biegler, Line search filter methods for nonlinear programming: Local convergence, SIAM J. Optim., 16 (2005), pp. 32–48. · Zbl 1115.90056
[45] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), pp. 25–57. · Zbl 1134.90542
[46] A. Wächter, L. T. Biegler, Y.-D. Lang, and A. Raghunathan, IPOPT: An Interior Point Algorithm for Large-Scale Nonlinear Optimization, http://www.coin-or.org (2002).
[47] R. Waltz, J. Morales, J. Nocedal, and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Program., 107 (2006), pp. 391–408. · Zbl 1134.90053
[48] V. M. Zavala and M. Anitescu, Scalable nonlinear programming via exact differentiable penalty functions and trust-region Newton methods, SIAM J. Optim., 24 (2014), pp. 528–558. · Zbl 1295.90086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.