×

Stabilized lowest-order finite element approximation for linear three-field poroelasticity. (English) Zbl 1326.76054


MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] C. G. Armstrong, W. M. Lai, and V. C. Mow, An analysis of the unconfined compression of articular cartilage, J. Biomech. Engrg., 106 (1984), pp. 73–165.
[2] I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322–333.
[3] S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228 (2009), pp. 7986–8014. · Zbl 1391.74234
[4] H. Barucq, M. Madaune-Tort, and P. Saint-Macary, Some existence-uniqueness results for a class of one-dimensional nonlinear Biot models, Nonlinear Anal., 61 (2005), pp. 591–612. · Zbl 1068.35003
[5] P. B. Bochev and C. R. Dohrmann, A computational study of stabilized, low-order \(C0\) finite element approximations of Darcy equations, Comput. Mech., 38 (2006), pp. 323–333. · Zbl 1177.76191
[6] R. Boer, Trends in Continuum Mechanics of Porous Media, Theory Appl. Transp. Porous Media 18, Springer, New York, 2005.
[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 2008.
[8] E. Burman and P. Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math., 198 (2007), pp. 35–51. · Zbl 1101.76032
[9] V. Carey, D. Estep, and S. Tavener, A posteriori analysis and adaptive error control for operator decomposition solution of coupled semilinear elliptic systems, Int. J. Numer. Methods Engrg., 94 (2013), pp. 826–849. · Zbl 1352.65477
[10] D. Chapelle, J. F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel, A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46 (2010), pp. 91–101. · Zbl 1301.92016
[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Appl. Math. 40, SIAM, Philadelphia, 2002. · Zbl 0999.65129
[12] A. N. Cookson, J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sinclair, M. Siebes, and N. P. Smith, A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics, J. Biomech., 45 (2012), pp. 850–855.
[13] O. Coussy, Poromechanics, John Wiley & Sons New York, 2004.
[14] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. 69, Springer, New York, 2011.
[15] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, London, 2005. · Zbl 1083.76001
[16] X. Feng and Y. He, Fully discrete finite element approximations of a polymer gel model, SIAM J. Numer. Anal., 48 (2010), pp. 2186–2217. · Zbl 1218.82031
[17] F. Galbusera, H. Schmidt, J. Noailly, A. Malandrino, D. Lacroix, H. J. Wilke, and A. Shirazi-Adl, Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs, J. Mech. Behav. Biomed. Mater., 4 (2011), pp. 1234–1241.
[18] P. A. Galie, R. L. Spilker, and J. P. Stegemann, A linear, biphasic model incorporating a Brinkman term to describe the mechanics of cell-seeded collagen hydrogels, Ann. Biomed. Engrg., 39 (2011), pp. 2767–2779.
[19] J. B. Haga, H. Osnes, and H. P. Langtangen, On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36 (2012), pp. 1507–1522.
[20] M. H. Holmes and V. C. Mow, The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration, J. Biomech., 23 (1990), pp. 1145–1156.
[21] A.-R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transfer, 46 (2003), pp. 4989–5003. · Zbl 1121.76521
[22] J. Kim, H. A. Tchelepi, and R. Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 1591–1606. · Zbl 1228.74101
[23] P. Kowalczyk, Mechanical model of lung parenchyma as a two-phase porous medium, Transp. Porous Media, 11 (1993), pp. 281–295.
[24] H. Li and Y. Li, A discontinuous Galerkin finite element method for swelling model of polymer gels, J. Math. Anal. Appl., 398 (2012), pp. 11–25. · Zbl 1462.65147
[25] X. G. Li, H. Holst, J. Ho, and S. Kleiven, Three dimensional poroelastic simulation of brain edema: Initial studies on intracranial pressure, in Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Springer, New York, 2010, pp. 1478–1481.
[26] K. Lipnikov, Numerical Methods for the Biot Model in Poroelasticity, Ph.D. thesis, University of Houston, Houston, TX, 2002.
[27] R. Liu, Discontinuous Galerkin Finite Element Solution for Poromechanics, Ph.D. thesis, The University of Texas at Austin, Austin, TX, 2004.
[28] V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments, J. Biomech. Engrg., 102 (1980), pp. 73–84.
[29] M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem, Int. J. Numer. Methods Engrg., 37 (1994), pp. 645–667. · Zbl 0791.76047
[30] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: The continuous in time case, Comput. Geosci., 11 (2007), pp. 131–144. · Zbl 1117.74015
[31] P. J. Phillips and M. F. Wheeler A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: The discrete-in-time case, Comput. Geosci., 11 (2007), pp. 145–158. · Zbl 1117.74016
[32] P. J. Phillips and M. F. Wheeler, Overcoming the problem of locking in linear elasticity and poroelasticity: An heuristic approach, Comput. Geosci., 13 (2009), pp. 5–12. · Zbl 1172.74017
[33] R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), pp. 310–340. · Zbl 0979.74018
[34] R. Verfürth, A posteriori error estimators for convection-diffusion equations, Numer. Math., 80 (1998), pp. 641–663.
[35] M. F. Wheeler and X. Gai, Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity, Numer. Methods Partial Differential Equations, 23 (2007), pp. 785–797. · Zbl 1115.74054
[36] J. A. White and R. I. Borja, Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 4353–4366. · Zbl 1194.74480
[37] B. Wirth and I. Sobey, An axisymmetric and fully \(3\)D poroelastic model for the evolution of hydrocephalus, Math. Med. Bio., 23 (2006), pp. 363–388. · Zbl 1117.92017
[38] S.-Y. Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model, Numer. Methods Partial Differential Equations, 29 (2013), pp. 1749–1777. · Zbl 1274.74455
[39] A. Ženíšek, The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat., 29 (1984), pp. 194–211. · Zbl 0557.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.