Independence in contingency tables using simplicial geometry. (English) Zbl 1327.62360

Summary: Frequently, contingency tables are generated in a multinomial sampling. Multinomial probabilities are then organized in a table assigning probabilities to each cell. A probability table can be viewed as an element in the simplex. The Aitchison geometry of the simplex identifies independent probability tables as a linear subspace. An important consequence is that, given a probability table, the nearest independent table is obtained by orthogonal projection onto the independent subspace. The nearest independent table is identified as that obtained by the product of geometric marginals, which do not coincide with the standard marginals, except in the independent case. The original probability table is decomposed into orthogonal tables, the independent and the interaction tables. The underlying model is log-linear, and a procedure to test independence of a contingency table, based on a multinomial simulation, is developed. Its performance is studied on an illustrative example.


62H17 Contingency tables
60D05 Geometric probability and stochastic geometry
62Q05 Statistical tables
Full Text: DOI


[1] DOI: 10.1002/0471249688
[2] DOI: 10.1093/biomet/70.1.57 · Zbl 0515.62057
[3] DOI: 10.1007/978-94-009-4109-0
[4] DOI: 10.1023/A:1010954915624 · Zbl 1101.86310
[5] DOI: 10.1023/A:1007529726302 · Zbl 1101.86309
[6] Bacon-Shone J., Proceedings of CODAWORK’08, The 3rd Compositional Data Analysis Workshop (2008)
[7] Benzécri J. P., L’Analyse des Donnees: 2. L’Analyse des Correspondances (1973)
[8] DOI: 10.1198/016214501753381850 · Zbl 1073.62573
[9] Christensen R., Log-linear Models and Logistic Regression (1997) · Zbl 0880.62073
[10] DOI: 10.1002/9781119976462.ch11
[11] DOI: 10.1007/s11004-009-9238-0 · Zbl 1178.86018
[12] Egozcue J. J., Proceedings of CODAWORK’08, The 3rd Compositional Data Analysis Workshop (2008)
[13] DOI: 10.1007/s11004-005-7381-9 · Zbl 1177.86018
[14] DOI: 10.1144/GSL.SP.2006.264.01.11
[15] DOI: 10.1023/A:1023818214614 · Zbl 1302.86024
[16] Everitt B., The Analysis of Contingency Tables (1992) · Zbl 0803.62047
[17] DOI: 10.1007/s11004-011-9333-x
[18] Glaser T., Sozialpolitische Studienreihe des BMASK, Band 8 (2011)
[19] DOI: 10.1080/01621459.1996.10476702
[20] Graffelman J., Proceedings of the 4th International Workshop on Compositional Data Analysis, 2011 (2011)
[21] DOI: 10.1002/9781119976462.ch15
[22] DOI: 10.1201/9781420011234 · Zbl 1198.62061
[23] DOI: 10.1002/9781119976462.ch8
[24] DOI: 10.1007/s11004-011-9338-5 · Zbl 05942425
[25] Greenacre M. J., Theory and Application of Correspondence Analysis (1984) · Zbl 0555.62005
[26] DOI: 10.1002/9781119976462.ch4
[27] DOI: 10.1023/A:1023866030544 · Zbl 1302.86027
[28] DOI: 10.1016/j.csda.2012.02.012 · Zbl 1255.62116
[29] DOI: 10.1186/1471-2156-10-88
[30] DOI: 10.1007/s00357-012-9105-4 · Zbl 1360.62347
[31] DOI: 10.1002/9781119976462
[32] DOI: 10.1007/s004770100077 · Zbl 0987.62001
[33] DOI: 10.1023/A:1014890722372 · Zbl 1031.86007
[34] Pearson K., Mathematical Contributions to the Theory of Evolution. XIII. On the Theory of Contingency and its Relation to Association and Normal Correlation (1904) · JFM 36.0313.12
[35] DOI: 10.1038/ng.2007.13
[36] DOI: 10.2307/2340126
[37] Yule G.U., An Introduction to the Theory of Statistics (1950) · Zbl 0039.13802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.