Three-field block preconditioners for models of coupled magma/mantle dynamics. (English) Zbl 1327.65055


65F08 Preconditioners for iterative methods
76M10 Finite element methods applied to problems in fluid mechanics
86A17 Global dynamics, earthquake problems (MSC2010)
86-08 Computational methods for problems pertaining to geophysics


Full Text: DOI arXiv


[1] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. Smith, Composable linear solvers for multiphysics, in Proceedings of the 11th International Symposium on Parallel and Distributed Computing (ISPDC), 2012, pp. 55–62.
[2] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers, Numer. Math. Sci. Comput., Oxford University Press, Oxford, UK, 2005. · Zbl 1083.76001
[3] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala, ML 5.0 Smoothed Aggregation Users Guide, Tech. report SAND2006-2649, Sandia National Laboratories, 2006.
[4] P. P. Grinevich and M. A. Olshanskii, An iterative method for the Stokes-type problem with variable viscosity, SIAM J. Sci. Comput., 31 (2009), pp. 3939–3978. · Zbl 1410.76290
[5] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155–177. · Zbl 0995.65128
[6] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, UK, 2013. · Zbl 1267.15001
[7] R. F. Katz, M. G. Knepley, B. Smith, M. Spiegelman, and E. T. Coon, Numerical simulation of geodynamic processes with the portable extensible toolkit for scientific computation, Phys. Earth Planet. In., 163 (2007), pp. 52–68.
[8] T. Keller, D. A. May, and B. J. P. Kaus, Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust, Geophys. J. Int., 195 (2013), pp. 1406–1442.
[9] A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput., 19 (1998), pp. 172–184. · Zbl 0917.73069
[10] A. Logg, K.-A. Mardal, and G. N. Wells, eds., Automated Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, Springer, New York, 2012. · Zbl 1247.65105
[11] A. Logg and G. N. Wells, DOLFIN: Automated finite element computing, ACM Trans. Math. Software, 37 (2010), pp. 20:1–20:28. · Zbl 1364.65254
[12] D. McKenzie, The generation and compaction of partially molten rock, J. Petrol., 25 (1984), pp. 713–765.
[13] S. Rhebergen and G. N. Wells, Supporting computer code, http://www.repository.cam.ac.uk/handle/1810/248270, (2015).
[14] S. Rhebergen, G. N. Wells, R. F. Katz, and A. J. Wathen, Analysis of block-preconditioners for models of coupled magma/mantle dynamics, SIAM J. Sci. Comput., 36 (2014), pp. A1960–A1977. · Zbl 1299.86001
[15] Y. Takei and R. F. Katz, Consequences of viscous anisotropy in a deforming, two-phase aggregate: Part 1. Governing equations and linearised analysis, J. Fluid Mech., 734 (2013), pp. 424–455. · Zbl 1294.76243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.