×

zbMATH — the first resource for mathematics

An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. (English) Zbl 1327.76106
Summary: We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

MSC:
76M28 Particle methods and lattice-gas methods
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Z10 Biopropulsion in water and in air
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[2] C.S. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion, Ph.D. Thesis, Yeshiva University, 1972.
[3] Peskin, C.S., The immersed boundary method, Acta numerica, 11, 479-517, (2002) · Zbl 1123.74309
[4] Mittal, R.; Iaccarino, G., Immersed boundary method, Annu. rev. fluid mech., 37, 239-261, (2005) · Zbl 1117.76049
[5] Unverdi, S.O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. comput. phys., 100, 25-37, (1992) · Zbl 0758.76047
[6] LeVeque, R.J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. numer. anal., 31, 1019-1044, (1994) · Zbl 0811.65083
[7] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu. rev. fluid mech., 30, 329-364, (1998) · Zbl 1398.76180
[8] Aidun, C.K.; Clausen, J.R., Lattice-Boltzmann method for complex flows, Annu. rev. fluid mech., 42, 439-472, (2010) · Zbl 1345.76087
[9] Ladd, A.J.C., Numerical simulation of particulate suspensions via a discretized Boltzmann equation. part 1: theoretical foundation, J. fluid mech., 271, 285-309, (1994)
[10] Krafczyk, M.; Tölke, J.; Rank, E.; Schulz, M., Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods, Comput. struct., 79, 2031-2037, (2001)
[11] Lallemand, P.; Luo, L.S., Lattice Boltzmann method for moving boundaries, J. comput. phys., 184, 406-421, (2003) · Zbl 1062.76555
[12] Qi, D.; Aidun, C.K., A new method for analysis of the fluid interaction with a deformable membrane, J. stat. phys., 90, 145-158, (1998) · Zbl 0918.73050
[13] Alexeev, A.; Verberg, R.; Balazs, A.C., Modeling the motion of microcapsules on compliant polymeric surfaces, Macromolecules, 38, 10244-10260, (2005)
[14] Feng, Z.G.; Michaelides, E.E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. comput. phys., 195, 602-628, (2004) · Zbl 1115.76395
[15] Feng, Z.G.; Michaelides, E.E., Proteus: a direct forcing method in the simulations of particulate flows, J. comput. phys., 202, 20-51, (2005) · Zbl 1076.76568
[16] Shu, C.; Liu, N.; Chew, Y.T., A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder, J. comput. phys., 226, 1607-1622, (2007) · Zbl 1173.76395
[17] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. comput. phys., 228, 1963-1979, (2009) · Zbl 1243.76081
[18] Wu, J.; Shu, C., An improved immersed boundary – lattice Boltzmann method for simulating three-dimensional incompressible flows, J. comput. phys., 229, 5022-5042, (2010) · Zbl 1346.76164
[19] Le, D.V.; White, J.; Peraire, J.; Lim, K.M.; Khoo, B.C., An implicit immersed boundary method for three-dimensional fluid-membrane interactions, J. comput. phys., 228, 8427-8445, (2009) · Zbl 1400.76024
[20] Krüger, T.; Varnik, F.; Raabe, D., Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. math. appl., 61, 3485-3505, (2011) · Zbl 1225.76231
[21] Hao, J.; Zhu, L., A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction, Comput. math. appl., 59, 185-193, (2010) · Zbl 1189.76407
[22] Zhu, L.; He, G.; Wang, S.; Miller, L.; Zhang, X.; You, Q.; Fang, S., An immersed boundary method by the lattice Boltzmann approach in three dimensions with application, Comput. math. appl., 61, 3506-3518, (2011) · Zbl 1225.76249
[23] Yu, D.; Mei, R.; Shyy, W., A multi-block lattice Boltzmann method for viscous fluid flows, Int. J. numer. meth. fluids, 39, 99-120, (2002) · Zbl 1036.76051
[24] Peng, Y.; Shu, C.; Chew, Y.T.; Niu, X.D.; Lu, X.Y., Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows, J. comput. phys., 218, 460-478, (2006) · Zbl 1161.76552
[25] Sui, Y.; Chew, Y.T.; Roy, P.; Low, H.T., A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions, Int. J. numer. meth. fluids, 53, 1727-1754, (2007) · Zbl 1110.76042
[26] Zhang, J.; Johnson, P.C.; Popel, A.S., An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Phys. biol., 4, 285-295, (2007)
[27] Zhu, L.; Peskin, C.S., Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. comput. phys., 179, 452-468, (2002) · Zbl 1130.76406
[28] Kim, Y.; Peskin, C.S., Penalty immersed boundary method for an elastic boundary with mass, Phys. fluids, 19, 053103, (2007) · Zbl 1146.76441
[29] Guo, Z.L.; Zheng, C.G.; Shi, B.C., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. rev. E, 65, 046308, (2002) · Zbl 1244.76102
[30] Connell, B.S.H.; Yue, D.K.P., Flapping dynamics of a flag in a uniform stream, J. fluid mech., 581, 33-67, (2007) · Zbl 1124.76011
[31] Q.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report No.97-65, 1997, pp. 325-432. · Zbl 0927.65111
[32] Sui, Y.; Chew, Y.T.; Roy, P.; Low, H., A hybrid method to study flow-induced deformation of three-dimensional capsules, J. comput. phys., 227, 6351-6371, (2008) · Zbl 1160.76028
[33] Gao, T.; Tseng, Y.H.; Lu, X.Y., An improved hybrid Cartesian/immersed boundary method for fluid-solid flows, Int. J. numer. meth. fluids, 55, 1189-1211, (2007) · Zbl 1127.76045
[34] Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. comput. phys., 189, 351-370, (2003) · Zbl 1061.76046
[35] Xu, S.; Wang, Z.J., An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. comput. phys., 216, 454-493, (2006) · Zbl 1220.76058
[36] Griffith, B.E.; Peskin, C.S., On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. comput. phys., 208, 75-105, (2005) · Zbl 1115.76386
[37] Mittal, S.; Singh, S., Vortex-induced vibrations at subcritical re, J. fluid mech., 534, 185-194, (2005) · Zbl 1072.76023
[38] Morzynski, M.; Thiele, F., Numerical stability analysis of a flow about a cylinder, Z. angew. math. mech., 71, T424-T428, (1991)
[39] Kumar, B.; Mittal, S., Prediction of the critical Reynolds number for flow past a circular cylinder, Comput. meth. appl. mech. eng., 195, 6046-6058, (2006) · Zbl 1119.76031
[40] Shelley, M.; Vandenberghe, N.; Zhang, J., Heavy flags undergo spontaneous oscillations in flowing water, Phys. rev. lett., 94, 094302, (2005)
[41] Zhang, J.; Childress, S.; Libchaber, A.; Shelley, M., Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, Nature, 408, 835-839, (2000)
[42] Jia, L.B.; Li, F.; Yin, X.Z.; Yin, X.Y., Coupling modes between two flapping filaments, J. fluid mech., 581, 199-220, (2007) · Zbl 1176.76044
[43] Zhu, L.; Peskin, C.S., Interaction of two flapping filaments in a flowing soap film, Phys. fluids, 15, 1954-1960, (2003) · Zbl 1186.76611
[44] Alben, S., Wake-mediated synchronization and drafting in coupled flags, J. fluid mech., 641, 489-496, (2009) · Zbl 1183.76653
[45] Breder, C.M., On the survival value of fish schools, Zoologica, 52, 25-40, (1967)
[46] Weihs, D., Hydromechanics of fish schooling, Nature, 241, 290-291, (1973)
[47] Liao, J.C.; Beal, D.N.; Lauder, G.V.; Triantafyllou, M.S., Fish exploiting vortices decrease muscle activity, Science, 302, 1566-1569, (2003)
[48] Michelin, S.; Llewellyn Smith, S.G., Linear stability analysis of coupled parallel flexible plates in an axial flow, J. fluids struct., 25, 1136-1157, (2009)
[49] Schouveiler, L.; Eloy, C., Coupled flutter of parallel plates, Phys. fluids, 21, 081703, (2009) · Zbl 1183.76460
[50] Keenleyside, M.H.S., Some aspects in the schooling behavior in fish, Behaviours, 8, 183-248, (1955)
[51] Ristroph, L.; Zhang, J., Anomalous hydrodynamic drafting of interacting flapping flags, Phys. rev. lett., 101, 194502, (2008)
[52] Liao, J.C., A review of fish swimming mechanics and behaviour in altered flows, Phil. trans. R. soc. B, 362, 1973-1993, (2007)
[53] Beal, D.N.; Hover, F.S.; Triantafyllou, M.S.; Liao, J.C.; Lauder, G.V., Passive propulsion in vortex wakes, J. fluid mech., 549, 385-402, (2006)
[54] Eldredge, J.D.; Pisani, D., Passive locomotion of a simple articulated fish-like system in the wake of an obstacle, J. fluid mech., 607, 279-288, (2008) · Zbl 1145.76478
[55] Jia, L.B.; Yin, X.Z., Response modes of a flexible filament in the wake of a cylinder in a flowing soap film, Phys. fluids, 21, 101704, (2009)
[56] Liao, J.C., The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow, J. exp. biol., 209, 4077-4090, (2006)
[57] Liao, J.C.; Beal, D.N.; Lauder, G.V.; Triantafyllou, M.S., The k´rm´n gait: novel body kinematics of rainbow trout swimming in a vortex street, J. exp. biol., 206, 1059-1073, (2003)
[58] Shi, X.; Phan-Thien, N., Distributed Lagrange multiplier/fictitious domain method in the framework of lattice Boltzmann method for fluid-structure interactions, J. comput. phys., 206, 81-94, (2005) · Zbl 1087.76543
[59] Alben, S., Simulating the dynamics of flexible bodies and vortex sheets, J. comput. phys., 228, 2587-2603, (2009) · Zbl 1158.74015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.