×

Global solutions to a one-dimensional non-conservative two-phase model. (English) Zbl 1327.76152

Summary: In this paper we investigate a basic one-dimensional viscous gas-liquid model based on the two-fluid model formulation. The gas is modeled as a polytropic gas whereas liquid is assumed to be incompressible. A main challenge with this model is the appearance of a non-conservative pressure term which possibly also blows up at transition to single-phase liquid flow (due to incompressible liquid). We investigate the model both in a finite domain (initial-boundary value problem) and in the whole space (Cauchy problem). We demonstrate that under appropriate smallness conditions on initial data we can obtain time-independent estimates which allow us to show existence and uniqueness of regular solutions as well as to gain insight into the long-time behavior of the model. These results rely strongly on the fact that we can derive appropriate upper and lower uniform bounds on the gas and liquid mass. In particular, the estimates guarantee that gas does not vanish at any point for any time when initial gas phase has a positive lower limit. The discussion of the Cauchy problem is general enough to take into account the possibility that the liquid phase may vanish at some points at initial time.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L60 First-order nonlinear hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Bresch, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238, 211 (2003) · Zbl 1037.76012 · doi:10.1007/s00220-003-0859-8
[2] D. Bresch, On some compressible fluid models Korteweg, lubrication, and shallow water systems,, Comm. Partial Differential Equations, 28, 843 (2003) · Zbl 1106.76436 · doi:10.1081/PDE-120020499
[3] D. Bresch, Stabilité de solutions faibles globales pour leséquations de Navier-Stokes compressible avec température,, C. R. Math. Acad. Sci., 343, 219 (2006) · Zbl 1217.76067 · doi:10.1016/j.crma.2006.05.016
[4] D. Bresch, Global weak solutions to a generic two-fluid model,, Arch. Rational Mech. Anal., 196, 599 (2010) · Zbl 1193.35146 · doi:10.1007/s00205-009-0261-6
[5] D. Bresch, Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system,, Comm. Math. Phys., 309, 737 (2012) · Zbl 1235.76182 · doi:10.1007/s00220-011-1379-6
[6] F. Coquel, A numerical method using upwind schemes for the resolution of two-phase flows,, J. Comput. Phys., 136, 272 (1997) · Zbl 0893.76052 · doi:10.1006/jcph.1997.5730
[7] Y. Cho, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl., 83, 243 (2004) · Zbl 1080.35066 · doi:10.1016/j.matpur.2003.11.004
[8] S. Evje, Hybrid flux-splitting schemes for a common two-fluid model,, J. Comput. Phys., 192, 175 (2003) · Zbl 1032.76696 · doi:10.1016/j.jcp.2003.07.001
[9] S. Evje, Weakly implicit numerical schemes for a two-fluid model,, SIAM J. Sci. Comput., 26, 1449 (2005) · Zbl 1149.76673 · doi:10.1137/030600631
[10] S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells,, SIAM J. Math. Anal., 43, 1887 (2011) · Zbl 1432.76261 · doi:10.1137/100813932
[11] S. Evje, Weak solutions of a gas-liquid drift-flux model with general slip law for wellbore operators,, Discrete Contin. Dyn. Syst., 33, 4497 (2013) · Zbl 1339.76056 · doi:10.3934/dcds.2013.33.4497
[12] A. C. Fowler, Flooding and flow reversal in annular two-phase flow,, SIAM J. Appl. Math., 52, 15 (1992) · Zbl 0741.76082 · doi:10.1137/0152002
[13] Z. H. Guo, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM J. Math. Anal., 39, 1402 (2008) · Zbl 1151.35071 · doi:10.1137/070680333
[14] B. L. Keyfitz, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow,, Discrete Contin. Dyn. Syst. Ser. B, 3, 541 (2003) · Zbl 1055.35074 · doi:10.3934/dcdsb.2003.3.541
[15] H.-L. Li, Vanishing of Vacuum States and Blow-up Phenomena of the Compressible Navier-Stokes Equations,, Commun. Math. Phys., 281, 401 (2008) · Zbl 1173.35099 · doi:10.1007/s00220-008-0495-4
[16] A. Mellet, On the barotropic compressible Navier-Stokes equations,, Comm. Partial Differential Equations, 32, 431 (2007) · Zbl 1149.35070 · doi:10.1080/03605300600857079
[17] A. Mellet, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39, 1344 (2008) · Zbl 1141.76054 · doi:10.1137/060658199
[18] A. Prosperetti, <em>Computational Methods for Multiphase Flow</em>,, Corrected paperback reprint of the 2007 original. Cambridge University Press (2007)
[19] M. D. Thanh, Numerical approximation for a Baer-Nunziato model of two-phase flows,, Appl. Numer. Math., 61, 702 (2011) · Zbl 1429.76113 · doi:10.1016/j.apnum.2011.01.004
[20] L. Yao, A note on viscous liquid-gas two-phase flow model with mass-dependent viscosity and vacuum,, Nonlinear Anal. Real World Appl., 13, 2323 (2012) · Zbl 1254.76154 · doi:10.1016/j.nonrwa.2012.02.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.