×

zbMATH — the first resource for mathematics

On static output-feedback stabilization for multi-input multi-output positive systems. (English) Zbl 1327.93318
Summary: This paper revisits the static output-feedback stabilization problem for positive systems. We first point out that for a class of positive systems whose output matrix has a particular row echelon form, this problem can be completely solved via linear programming. By duality, the result is also valid when the column echelon form of the input matrix has a particular structure. Along this line, by augmenting the output matrix as well as the feedback gain matrix, an iterative convex optimization algorithm is developed for the more general case. Finally, we show that the proposed method has advantages over existing works via several numerical examples.

MSC:
93D15 Stabilization of systems by feedback
93C35 Multivariable systems, multidimensional control systems
93C05 Linear systems in control theory
93C25 Control/observation systems in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] El Ghaoui, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control 42 (8) pp 1171– (1997) · Zbl 0887.93017 · doi:10.1109/9.618250
[2] Cao, Static output feedback stabilization: an ILMI approach, Automatica 34 (12) pp 1641– (1998) · Zbl 0937.93039 · doi:10.1016/S0005-1098(98)80021-6
[3] He, An improved ILMI method for static output feedback control with application to multivariable PID control, IEEE Transactions on Automatic Control 51 (10) pp 1678– (2006) · Zbl 1366.93218 · doi:10.1109/TAC.2006.883029
[4] Shu, An augmented system approach to static output-feedback stabilization with H performance for continuous-time plants, International Journal of Robust and Nonlinear Control 19 (7) pp 768– (2009) · Zbl 1166.93363 · doi:10.1002/rnc.1348
[5] Jong, Modeling and simulation of genetic regulatory systems: a literature review, Journal of Computational Biology 9 (1) pp 67– (2002) · doi:10.1089/10665270252833208
[6] Jacquez, Compartmental Analysis in Biology and Medicine (1985)
[7] Caswell, Matrix Population Models: Construction, Analysis and Interpretation (2001)
[8] Zhao, Stability of switched positive linear systems with average dwell time switching, Automatica 48 (6) pp 1132– (2012) · Zbl 1244.93129 · doi:10.1016/j.automatica.2012.03.008
[9] Zhao, Stability of a class of switched positive linear time-delay systems, International Journal of Robust and Nonlinear Control 23 (5) pp 578– (2013) · Zbl 1284.93208 · doi:10.1002/rnc.2777
[10] Tong, Weighted H control with D-stability constraint for switched positive linear systems, International Journal of Robust and Nonlinear Control 24 (4) pp 758– (2014) · Zbl 1284.93094 · doi:10.1002/rnc.2918
[11] Ait Rami, Positive observers for linear positive systems, and their implications, International Journal of Control 84 (4) pp 716– (2011) · Zbl 1245.93026 · doi:10.1080/00207179.2011.573000
[12] Ait Rami, Characterization and stability of autonomous positive descriptor systems, IEEE Transations on Automatic Control 57 (10) pp 2668– (2012) · Zbl 1369.93432 · doi:10.1109/TAC.2012.2190211
[13] Liu, Stability analysis of positive switched linear systems with delays, IEEE Transactions on Automatic Control 56 (7) pp 1684– (2011) · Zbl 1368.93599 · doi:10.1109/TAC.2011.2122710
[14] Kaczorek, Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems I: Regular Papers 58 (6) pp 1203– (2011) · doi:10.1109/TCSI.2010.2096111
[15] Kaczorek, Positive 1D and 2D Systems (2002) · doi:10.1007/978-1-4471-0221-2
[16] Gao, Control for stability and positivity: Equivalent conditions and computation, IEEE Transactions on Circuits and Systems II: Express Briefs 52 (9) pp 540– (2005) · doi:10.1109/TCSII.2005.850525
[17] Shu, Positive observers and dynamic output-feedback controllers for interval positive linear systems, IEEE Transactions on Circuits and Systems I: Regular Papers 55 (10) pp 3209– (2008) · doi:10.1109/TCSI.2008.924116
[18] Feng, Decay rate constrained stabilization of positive systems using static output feedback, International Journal of Robust and Nonlinear Control 21 (1) pp 44– (2011) · Zbl 1207.93080 · doi:10.1002/rnc.1575
[19] Wang, Static output feedback control for positive linear continuous-time systems, International Journal of Robust and Nonlinear Control 23 (14) pp 1537– (2013) · Zbl 1286.93080 · doi:10.1002/rnc.2836
[20] Li, Positivity-preserving H model reduction for positive systems, Automatica 47 (7) pp 1504– (2011) · Zbl 1220.93036 · doi:10.1016/j.automatica.2011.02.032
[21] Li, H positive filtering for positive linear discrete-time systems: an augmentation approach, IEEE Transactions on Automatic Control 55 (10) pp 2337– (2010) · Zbl 1368.93719 · doi:10.1109/TAC.2010.2053471
[22] Li, Positive state-bounding observer for positive interval continuous-time systems with time delay, International Journal of Robust and Nonlinear Control 22 (11) pp 1244– (2012) · Zbl 1274.93039 · doi:10.1002/rnc.1752
[23] Ait Rami, Controller synthesis for positive linear systems with bounded controls, IEEE Transactions on Circuits and Systems II: Express Briefs 54 (2) pp 151– (2007) · doi:10.1109/TCSII.2006.886888
[24] Liu, Constrained control of positive discrete-time systems with delays, IEEE Transactions on Circuits and Systems II: Express Briefs 55 (2) pp 193– (2008) · doi:10.1109/TCSII.2007.910910
[25] Liu, Constrained control of positive systems with delays, IEEE Transactions on Automatic Control 54 (7) pp 1596– (2009) · Zbl 1367.93280 · doi:10.1109/TAC.2009.2017961
[26] Ait Rami, Solvability of static output-feedback stabilization for LTI positive systems, Systems & Control Letters 60 (9) pp 704– (2011) · Zbl 1226.93116 · doi:10.1016/j.sysconle.2011.05.007
[27] Farina, Positive Linear Systems: Theory and Applications (2000) · Zbl 0988.93002 · doi:10.1002/9781118033029
[28] Meyer, Matrix Analysis and Applied Linear Algebra Book and Solutions Manual (2000) · doi:10.1137/1.9780898719512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.