×

On the hierarchical optimal control of a chain of distributed systems. (English) Zbl 1327.93405

Summary: We consider a chain of distributed systems governed by a degenerate parabolic equation, which satisfies a weak Hörmander type condition, with a control distributed over an open subdomain. In particular, we consider two objectives that we would like to accomplish. The first one being of a controllability type that consists of guaranteeing the terminal state to reach a target set starting from an initial condition; while the second one is keeping the state trajectory of the overall system close to a given reference trajectory over a finite time interval. We introduce the following framework. First, we partition the control subdomain into two disjoint open subdomains that are compatible with the strategy subspaces of the leader and that of the follower, respectively. Then, using the notion of Stackelberg’s optimization (which is a hierarchical optimization framework), we provide a new result on the existence of optimal control strategies for such an optimization problem, where the follower (which corresponds to the second criterion) is required to respond optimally, in the sense of best-response correspondence to the strategy of the leader (which is associated to the controllability-type problem) so as to achieve the overall objectives. Finally, we remark on the implication of our result in assessing the influence of the target set on the strategy of the follower with respect to the direction of leader-follower (and vice-versa) information flow.

MSC:

93E20 Optimal stochastic control
93A13 Hierarchical systems
35K10 Second-order parabolic equations
35K65 Degenerate parabolic equations
91A35 Decision theory for games
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] F. D. Araruna, Stackelberg-Nash exact controllability for linear and semilinear parabolic equations,, ESAIM Control Optim. Calc. Var., 21, 835 (2015) · Zbl 1319.35280 · doi:10.1051/cocv/2014052
[2] E. Barucci, Some results on partial differential equations and Asian options,, Math. Models Methods Appl. Sci., 11, 475 (2001) · Zbl 1034.35166 · doi:10.1142/S0218202501000945
[3] G. K. Befekadu, On the asymptotic estimates for exit probabilities and minimum exit rates of diffusion processes pertaining to a chain of distributed control systems,, SIAM J. Contr. Optim., 53, 2297 (2015) · Zbl 1376.37137 · doi:10.1137/140990322
[4] T. Bodineau, Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats,, J. Stat. Phys., 133, 1 (2008) · Zbl 1157.82027 · doi:10.1007/s10955-008-9601-4
[5] F. Delarue, Density estimates for a random noise propagating through a chain of differential equations,, J. Funct. Anal., 259, 1577 (2010) · Zbl 1223.60037 · doi:10.1016/j.jfa.2010.05.002
[6] I. Ekeland, <em>Convex Analysis and Variational Problems</em>,, North Holland (1976) · Zbl 0322.90046
[7] D. L. Elliott, Diffusions on manifolds arising from controllable systems,, in Geometric Methods in System Theory, 3, 285 (1973) · Zbl 0287.93024 · doi:10.1007/978-94-010-2675-8_19
[8] F. Guillén-González, On the approximate controllability of Stackelberg-Nash strategies for Stokes equations,, Proc. Amer. Math. Soc., 141, 1759 (2013) · Zbl 1301.93082 · doi:10.1090/S0002-9939-2012-11459-5
[9] L. Hörmander, Hypoelliptic second order differential operators,, Acta Math., 119, 147 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[10] K. Ichihara, A classification of the second order degenerate elliptic operators and its probabilistic characterization,, Z. Wahrscheinlichkeitstheor. Verw. Geb., 30, 253 (1974) · Zbl 0326.60097 · doi:10.1007/BF00533476
[11] G. Leitmann, On generalized Stackelberg strategies,, J. Optim. Theor. Appl., 26, 637 (1978) · Zbl 0372.90137 · doi:10.1007/BF00933155
[12] J. L. Lions, Some remarks on Stackelberg’s optimization,, Math. Models Methods Appl. Sci., 4, 477 (1994) · Zbl 0816.49014 · doi:10.1142/S0218202594000273
[13] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Rev., 30, 1 (1988) · Zbl 0644.49028 · doi:10.1137/1030001
[14] R. T. Rockafellar, Duality and stability in extremum problems involving convex functions,, Pacific J. Math., 21, 167 (1967) · Zbl 0154.44902 · doi:10.2140/pjm.1967.21.167
[15] J. C. Saut, Unique continuation for evolution equations,, J. Diff. Equ., 66, 118 (1987) · Zbl 0631.35044 · doi:10.1016/0022-0396(87)90043-X
[16] C. Soize, <em>The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions</em>,, Ser. Adv. Math. Appl. Sci. (1994) · Zbl 0807.60072 · doi:10.1142/9789814354110
[17] H. Von Stackelberg, <em>Marktform und Gleichgewicht</em>,, Springer (1934) · Zbl 1405.91003
[18] D. Stroock, On degenerate elliptic-parabolic operators of second order and their associated diffusions,, Comm. Pure Appl. Math., 25, 651 (1972) · Zbl 0344.35041 · doi:10.1002/cpa.3160250603
[19] D. Stroock, <em>Multidimensional Diffusion Processes</em>,, Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag (1997) · doi:10.1007/3-540-28999-2
[20] H. J. Sussmann, Controllability of nonlinear systems,, J. Diff. Equ., 12, 95 (1972) · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.