×

Period-adding structures in the parameter-space of a driven Josephson junction. (English) Zbl 1328.34043


MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
37C60 Nonautonomous smooth dynamical systems
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] 1. Albuquerque, H. A., Rubinger, R. M. & Rech, P. C. [2008] ” Self-similar structures in a 2D parameter-space of an inductorless Chua’s circuit,” Phys. Lett. A372, 4793-4798. genRefLink(16, ’S0218127415300359BIB1’, ’10.1016 · Zbl 1221.37233
[2] 2. Ben-Jacob, E., Goldhirsch, I., Imry, Y. & Fishman, S. [1982] ” Intermittent chaos in Josephson junctions,” Phys. Rev. Lett.49, 1599-1602. genRefLink(16, ’S0218127415300359BIB2’, ’10.1103
[3] 3. Bohr, T., Bak, P. & Jensen, M. H. [1984] ” Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps,” Phys. Rev. A30, 1970-1981. genRefLink(16, ’S0218127415300359BIB3’, ’10.1103
[4] 4. Bonatto, C. & Gallas, J. A. C. [2007] ” Accumulation horizons and period adding in optically injected semiconductor lasers,” Phys. Rev. E 75, 055204.
[5] 5. de Souza, Souza. S. L., Lima, A. A., Caldas, I. L., Medrano-T., R. O. & Guimar aes-Filho, Z. O. [2012] ” Self-similarities of periodic structures for a discrete model of a two-gene system,” Phys. Lett. A376, 1290. genRefLink(16, ’S0218127415300359BIB5’, ’10.1016 · Zbl 1260.37060
[6] 6. Do, Y.-H. & Lai, Y.-C. [2008] ” Multistability and arithmetically period-adding bifurcations in piecewise smooth dynamical systems,” Chaos18, 043107. genRefLink(16, ’S0218127415300359BIB6’, ’10.1063 · Zbl 1309.37046
[7] 7. Huberman, B. A., Crutchfield, J. P. & Packard, N. H. [1980] ” Noise phenomena in Josephson junctions,” Appl. Phys. Lett.37, 750-752. genRefLink(16, ’S0218127415300359BIB7’, ’10.1063
[8] 8. Irie, A., Kurosu, Y. & Oya, G. [2003] ” Rf-induced steps in intrinsic Josephson junctions in Bi2Sr2CaCu2Oy,” IEEE Trans. Appl. Supercond.13, 908-911. genRefLink(16, ’S0218127415300359BIB8’, ’10.1109
[9] 9. Jensen, M. H., Bak, P. & Bohr, T. [1984] ” Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps,” Phys. Rev. A30, 1960-1969. genRefLink(16, ’S0218127415300359BIB9’, ’10.1103
[10] 10. Kautz, R. L. [1981] ” Chaotic states of rf-biased Josephson junctions,” J. Appl. Phys.52, 6241-6246. genRefLink(16, ’S0218127415300359BIB10’, ’10.1063
[11] 11. Kautz, R. L. [1985] ” Chaos and thermal noise in the rf-biased Josephson junction,” J. Appl. Phys.58, 424-440. genRefLink(16, ’S0218127415300359BIB11’, ’10.1063
[12] 12. Kautz, R. L. & Monaco, R. [1985] ” Survey of chaos in the rf-biased Josephson junction,” J. Appl. Phys.57, 875-889. genRefLink(16, ’S0218127415300359BIB12’, ’10.1063
[13] 13. Krüger, T. S. & Rech, P. C. [2012] ” Dynamics of an erbium-doped fiber dual-ring laser,” Eur. Phys. J. D66, 12. genRefLink(16, ’S0218127415300359BIB13’, ’10.1140
[14] 14. Mathias, A. C. & Rech, P. C. [2012] ” Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions,” Neural Netw.34, 42-45. genRefLink(16, ’S0218127415300359BIB14’, ’10.1016
[15] 15. Pedersen, N. F. & Davidson, A. [1981] ” Chaos and noise rise in Josephson junctions,” Appl. Phys. Lett.39, 830-832. genRefLink(16, ’S0218127415300359BIB15’, ’10.1063
[16] 16. Prants, F. G. & Rech, P. C. [2014] ” Organization of periodic structures in a damped-forced oscillator,” Eur. Phys. J. B87, 196. genRefLink(16, ’S0218127415300359BIB16’, ’10.1140
[17] 17. Rech, P. C. [2013] ” Nonlinear dynamics investigation in parameter planes of a periodically forced compound KdV-Burgers equation,” Eur. Phys. J. B86, 356. genRefLink(16, ’S0218127415300359BIB17’, ’10.1140
[18] 18. Scherbel, J., Mans, M., Schneidewind, H., Kaiser, U., Biskupek, J., Schmidl, F. & Seidel, P. [2004] ” Texture and electrical dynamics of micrometer and submicrometer bridges in misaligned Tl2Ba2CaCu2O8 films,” Phys. Rev. B70, 104507. genRefLink(16, ’S0218127415300359BIB18’, ’10.1103
[19] 19. Schuster, H. G. & Just, W. [2005] Deterministic Chaos: An Introduction (Wiley-Weinheim). genRefLink(16, ’S0218127415300359BIB19’, ’10.1002
[20] 20. Shukrinov, Y. M., Botha, A. E., Medvedeva, S. Y., Kolahchi, M. R. & Irie, A. [2014] ” Structured chaos in a devil’s staircase of the Josephson junction,” Chaos24, 033115. genRefLink(16, ’S0218127415300359BIB20’, ’10.1063
[21] 21. Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. [1985] ” Determining Lyapunov exponents from a time series,” Physica D16, 285-317. genRefLink(16, ’S0218127415300359BIB21’, ’10.1016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.