×

zbMATH — the first resource for mathematics

Remnant for all black objects due to gravity’s rainbow. (English) Zbl 1328.83061
Summary: We argue that a remnant is formed for all black objects in gravity’s rainbow. This will be based on the observation that a remnant depends critically on the structure of the rainbow functions, and this dependence is a model independent phenomena. We thus propose general relations for the modified temperature and entropy of all black objects in gravity’s rainbow. We explicitly check this to be the case for Kerr, Kerr-Newman-dS, charged-AdS, and higher dimensional Kerr-AdS black holes. We also try to argue that a remnant should form for black saturn in gravity’s rainbow. This work extends our previous results on remnants of Schwarzschild black holes [the authors, Phys. Rev. D 89, No. 10, Article No. 104040, 6 p. (2014; doi:10.1103/PhysRevD.89.104040)] and black rings [the authors, J. High Energy Phys. 2014. No. 12, Paper No 159, 14 p. (2014; doi:10.1007/JHEP12(2014)159)].

MSC:
83C45 Quantization of the gravitational field
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ali, A. F., Black hole remnant from Gravity’s rainbow, Phys. Rev. D, 89, 104040, (2014)
[2] Ali, A. F.; Faizal, M.; Khalil, M. M., Remnants of black rings from Gravity’s rainbow, J. High Energy Phys., 1412, 159, (2014)
[3] Horava, P., Quantum gravity at a Lifshitz point, Phys. Rev. D, 79, 084008, (2009)
[4] Horava, P., Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett., 102, 161301, (2009)
[5] Amati, D.; Ciafaloni, M.; Veneziano, G., Can space-time be probed below the string size?, Phys. Lett. B, 216, 41, (1989)
[6] Garay, L. J., Quantum gravity and minimum length, Int. J. Mod. Phys. A, 10, 145-166, (1995)
[7] Ali, A. F.; Das, S.; Vagenas, E. C., Discreteness of space from the generalized uncertainty principle, Phys. Lett. B, 678, 497-499, (2009)
[8] Ali, A. F.; Das, S.; Vagenas, E. C., A proposal for testing quantum gravity in the lab, Phys. Rev. D, 84, 044013, (2011)
[9] ’t Hooft, G., Quantization of point particles in (\(2 + 1\))-dimensional gravity and space-time discreteness, Class. Quantum Gravity, 13, 1023-1040, (1996) · Zbl 0855.53047
[10] Kostelecky, V. A.; Samuel, S., Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D, 39, 683, (1989)
[11] Amelino-Camelia, G.; Ellis, J. R.; Mavromatos, N.; Nanopoulos, D. V.; Sarkar, S., Tests of quantum gravity from observations of gamma-ray bursts, Nature, 393, 763-765, (1998)
[12] Gambini, R.; Pullin, J., Nonstandard optics from quantum space-time, Phys. Rev. D, 59, 124021, (1999)
[13] Carroll, S. M.; Harvey, J. A.; Kostelecky, V. A.; Lane, C. D.; Okamoto, T., Noncommutative field theory and Lorentz violation, Phys. Rev. Lett., 87, 141601, (2001)
[14] Magueijo, J.; Smolin, L., Lorentz invariance with an invariant energy scale, Phys. Rev. Lett., 88, 190403, (2002)
[15] Amelino-Camelia, G., Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D, 11, 35-60, (2002) · Zbl 1062.83500
[16] Magueijo, J.; Smolin, L., Gravity’s rainbow, Class. Quantum Gravity, 21, 1725-1736, (2004) · Zbl 1051.83004
[17] Peng, J.-J.; Wu, S.-Q., Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory, Gen. Relativ. Gravit., 40, 2619-2626, (2008) · Zbl 1162.83336
[18] Galan, P.; Mena Marugan, G. A., Entropy and temperature of black holes in a Gravity’s rainbow, Phys. Rev. D, 74, 044035, (2006)
[19] Ling, Y.; Li, X.; Zhang, H.-b., Thermodynamics of modified black holes from Gravity’s rainbow, Mod. Phys. Lett. A, 22, 2749-2756, (2007) · Zbl 1143.83310
[20] Li, H.; Ling, Y.; Han, X., Modified (A)ds Schwarzschild black holes in rainbow spacetime, Class. Quantum Gravity, 26, 065004, (2009) · Zbl 1162.83011
[21] Ali, A. F.; Faizal, M.; Khalil, M. M., Absence of black holes at LHC due to Gravity’s rainbow, Phys. Lett. B, 743, 295-300, (2014)
[22] Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S., Hawking radiation as tunneling for extremal and rotating black holes, J. High Energy Phys., 0505, 014, (2005)
[23] Ze Ma, Z., Hawking temperature of Kerr-Newman-AdS black hole from tunneling, Phys. Lett. B, 666, 376-381, (2008) · Zbl 1328.83101
[24] Wald, R. M., General relativity, (2010), University of Chicago Press
[25] Zhao, L., Tunnelling through black rings, Commun. Theor. Phys., 47, 835-842, (2007)
[26] Garattini, R.; Mandanici, G., Particle propagation and effective space-time in Gravity’s rainbow, Phys. Rev. D, 85, 023507, (2012)
[27] Leiva, C.; Saavedra, J.; Villanueva, J., The geodesic structure of the Schwarzschild black holes in Gravity’s rainbow, Mod. Phys. Lett. A, 24, 1443-1451, (2009) · Zbl 1168.83322
[28] Ali, A. F.; Faizal, M.; Majumder, B., Absence of an effective horizon for black holes in Gravity’s rainbow, Europhys. Lett., 109, 2, 20001, (2015)
[29] Awad, A.; Ali, A. F.; Majumder, B., Nonsingular rainbow universes, J. Cosmol. Astropart. Phys., 1310, 052, (2013)
[30] Barrow, J. D.; Magueijo, J., Intermediate inflation from rainbow gravity, Phys. Rev. D, 88, 10, 103525, (2013)
[31] Liu, C.-Z.; Zhu, J.-Y., Hawking radiation and black hole entropy in a Gravity’s rainbow, Gen. Relativ. Gravit., 40, 1899-1911, (2008) · Zbl 1152.83384
[32] Ali, A. F.; Khalil, M. M., A proposal for testing Gravity’s rainbow
[33] Amelino-Camelia, G.; Ellis, J. R.; Mavromatos, N.; Nanopoulos, D. V., Distance measurement and wave dispersion in a Liouville string approach to quantum gravity, Int. J. Mod. Phys. A, 12, 607-624, (1997) · Zbl 1170.83375
[34] Amelino-Camelia, G.; Ellis, J. R.; Mavromatos, N.; Nanopoulos, D. V.; Sarkar, S., Tests of quantum gravity from observations of gamma-ray bursts, Nature, 393, 763-765, (1998)
[35] Amelino-Camelia, G.; Piran, T., Planck scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV gamma paradoxes, Phys. Rev. D, 64, 036005, (2001)
[36] Kifune, T., Invariance violation extends the cosmic ray horizon?, Astrophys. J., 518, L21-L24, (1999)
[37] Protheroe, R.; Meyer, H., An infrared background TeV gamma-ray crisis?, Phys. Lett. B, 493, 1-6, (2000)
[38] Aloisio, R.; Blasi, P.; Ghia, P. L.; Grillo, A. F., Probing the structure of space-time with cosmic rays, Phys. Rev. D, 62, 053010, (2000)
[39] Myers, R. C.; Pospelov, M., Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett., 90, 211601, (2003) · Zbl 1267.81298
[40] Amelino-Camelia, G., Quantum-spacetime phenomenology, Living Rev. Relativ., 16, 5, (2013)
[41] Adler, R. J.; Chen, P.; Santiago, D. I., The generalized uncertainty principle and black hole remnants, Gen. Relativ. Gravit., 33, 2101-2108, (2001) · Zbl 1003.83020
[42] Cavaglia, M.; Das, S.; Maartens, R., Will we observe black holes at LHC?, Class. Quantum Gravity, 20, L205-L212, (2003) · Zbl 1044.83502
[43] Medved, A.; Vagenas, E. C., When conceptual worlds collide: the GUP and the BH entropy, Phys. Rev. D, 70, 124021, (2004)
[44] Amelino-Camelia, G.; Arzano, M.; Procaccini, A., Severe constraints on loop-quantum-gravity energy-momentum dispersion relation from black-hole area-entropy law, Phys. Rev. D, 70, 107501, (2004)
[45] Ling, Y.; Hu, B.; Li, X., Modified dispersion relations and black hole physics, Phys. Rev. D, 73, 087702, (2006)
[46] Chen, P.; Ong, Y. C.; Yeom, D.-h., Black hole remnants and the information loss paradox
[47] Altamirano, N.; Kubiznak, D.; Mann, R. B.; Sherkatghanad, Z., Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies, 2, 89-159, (2014)
[48] Monteiro, R.; Perry, M. J.; Santos, J. E., Thermodynamic instability of rotating black holes, Phys. Rev. D, 80, 024041, (2009)
[49] Sekiwa, Y., Thermodynamics of de Sitter black holes: thermal cosmological constant, Phys. Rev. D, 73, 084009, (2006)
[50] Gibbons, G.; Lu, H.; Page, D. N.; Pope, C., The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys., 53, 49-73, (2005) · Zbl 1069.83003
[51] Gibbons, G.; Perry, M.; Pope, C., The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quantum Gravity, 22, 1503-1526, (2005) · Zbl 1068.83010
[52] Elvang, H.; Figueras, P., Black saturn, J. High Energy Phys., 0705, 050, (2007)
[53] Elvang, H.; Emparan, R.; Figueras, P., Phases of five-dimensional black holes, J. High Energy Phys., 0705, 056, (2007)
[54] Penrose, R., Gravitational collapse: the role of general relativity, Riv. Nuovo Cimento, 1, 252-276, (1969)
[55] Nicolini, P.; Winstanley, E., Hawking emission from quantum gravity black holes, J. High Energy Phys., 1111, 075, (2011) · Zbl 1306.83023
[56] Mureika, J.; Nicolini, P.; Spallucci, E., Could any black holes be produced at the LHC?, Phys. Rev. D, 85, 106007, (2012)
[57] Nicolini, P., Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys. A, 24, 1229-1308, (2009) · Zbl 1170.83417
[58] Bleicher, M.; Nicolini, P., Mini-review on mini-black holes from the mini-big bang, Astron. Nachr., 335, 605-611, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.