zbMATH — the first resource for mathematics

Lebesgue constants of the Walsh system. (English. Russian original) Zbl 1329.42026
Dokl. Math. 91, No. 3, 344-346 (2015); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 462, No. 5, 509-511 (2015).
Let \(W=(W_n)_{n=0}^\infty\) be the Walsh system, \(L_n(W)\) the Lebesgue constants of the Walsh system. It is known that \[ \frac{1}{4}\mathrm{Var}(n)\leq L_n(W)\leq \mathrm{Var}(n) \] where \(\mathrm{Var}(n)\) is the binary variation of \(n\). The authors study the asymptotic behavior of \(L_n(W)\). We give two results as examples.
1) For any \(k\in\mathbb N\) \[ \sum_{n=2^k+1}^{2^{k+1}}L_n(W)=2^k\left(\frac{k}{4}+1\right). \] 2) The following relation holds: \[ \lim\limits_{k\to\infty}\frac{1}{k}\sum_{n=2}^k\frac{L_n(W)}{\log_2n}=\frac{1}{4}. \]

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
43A75 Harmonic analysis on specific compact groups
Full Text: DOI
[1] N. K. Bari, Trigonometric Series (Fizmatgiz Moscow, 1961) [in Russian].
[2] B. S. Kashin and A. A. Saakyan, Orthogonal Series (AFTs Moscow, 1999) [in Russian]. · Zbl 1188.42010
[3] B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Transforms (Nauka Moscow, 1987) [in Russian]. · Zbl 0692.42009
[4] Fine, N J, No article title, Trans. Am. Math. Soc., 65, 372-414, (1949)
[5] Lorentz, G G, No article title, Acta Math., 80, 167-190, (1948) · Zbl 0031.29501
[6] Sucheston, L, No article title, Am. Math. Monthly, 74, 308-311, (1967) · Zbl 0148.12202
[7] Semenov, E M; Sukochev, F A, No article title, J. Func. Anal, 259, 1517-1541, (2010) · Zbl 1205.46012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.