zbMATH — the first resource for mathematics

Genuinely nonlinear models for convection-dominated problems. (English) Zbl 1329.76173
Summary: This paper introduces a general, nonlinear subgrid-scale (SGS) model, having boundedartificial viscosity, for the numerical simulation of convection-dominated problems. We also present a numerical comparison (error analysis and numerical experiments) between this model and the most common SGS model of Smagorinsky, which uses a \(p\)-Laplacian regularization. The numerical experiments for the 2-D convection-dominated convection-diffusion test problem show a clear improvement in solution quality for the new SGS model. This improvement is consistent with the bounded amount of artificial viscosity introduced by the new SGS model in the sharp transition regions.

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R99 Fracture and damage
76F02 Fundamentals of turbulence
Full Text: DOI
[1] Mohammadi, B.; Pironneau, O., Analysis of the K-epsilon turbulence model, (1994), John Wiley & Sons
[2] Pope, S.B., Turbulent flows, (2000), Cambridge · Zbl 0802.76033
[3] Sagaut, P., Large eddy simulation for incompressible flows, (2002), Springer Chichester, New York
[4] Smagorinsky, J., General circulation experiments with the primitive equation: I, the basic experiment, Mon. wea. rev., 91, 216-241, (1963)
[5] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-stakes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[6] Nävert, U., A finite element method for convection-diffusion problems, ()
[7] Johnson, C.; Nävert, U.; Pikäranta, J., Finite element methods for linear hyperbolic problems, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[8] Eriksson, K.; Johnson, C., Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. comput., 60, 167-188, (1993) · Zbl 0795.65074
[9] John, V.; Maubach, J.M.; Tobiska, L., Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems, Numer. math., 78, 156-188, (1997) · Zbl 0898.65068
[10] Roos, H.G.; Stynes, M.; Tobiska, L., Numerical methods for singularly perturbed differential equations: convection-diffusion and flow problems, (1996), Springer Göteborg · Zbl 0844.65075
[11] Du, Q.; Gunzburger, M., Finite element approximation for a ladyzhenskaya model for stationary incompressible viscous flows, SIAM J. numer. anal., 27, 1-19, (1990) · Zbl 0697.76046
[12] Du, Q.; Gunzburger, M., Analysis of a ladyzhenskaya model for incompressible viscous flow, J. math. anal. appl., 155, 21-45, (1991) · Zbl 0712.76039
[13] Layton, W.J., A nonlinear, subgridscale model for incompressible viscous flow problems, SIAM J. sci. comput., 17, 347-357, (1996) · Zbl 0844.76054
[14] Minty, G., Monotone (nonlinear) operators in Hilbert space, Duke math. J., 29, 341-346, (1962) · Zbl 0111.31202
[15] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites non linéaires, (1969), Dunod Berlin · Zbl 0189.40603
[16] Barrett, J.; Liu, W.B., Finite element approximation of degenerate quasilinear elliptic and parabolic problems, (), 1-16 · Zbl 0798.65092
[17] Girault, V.; Raviart, P.A., Finite element approximation of the Navier-Stokes equations, (1979), Springer-Verlag · Zbl 0396.65070
[18] Gunzburger, M., Finite element methods for viscous incompressible flow: A guide to theory, practice, and algorithms, (1989), Academic Press Berlin
[19] Crouzeix, M.; Thomée, V., The stability in L_p and wp1 of the L2 projection onto finite element function spaces, Math. comput., 48, 521-532, (1987) · Zbl 0637.41034
[20] Maubach, J.M., Iterative methods for nonlinear partial differential equations, (1991), C.W.I. Press Boston
[21] Cawood, M.E.; Ervin, V.J.; Layton, W.J.; Maubach, J.M., Adaptive defect correction methods for convection dominated, convection diffusion problems, J. comput. appl. math., 116, 1-21, (2000) · Zbl 0979.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.