×

Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows. (English) Zbl 1330.35334

Summary: This paper concerns the global existence and the large time behavior of strong and classical solutions to the two-dimensional (2D) Stokes approximation equations for the compressible flows. We consider the unique global strong solution or classical solution to the 2D Stokes approximation equations for the compressible flows together with the space-periodicity boundary condition or the no-stick boundary condition or Cauchy problem for arbitrarily large initial data. First, we prove that the density is bounded from above independent of time in all these cases. Secondly, we show that for the space-periodicity boundary condition or the no-stick boundary condition, if the initial density contains vacuum at least at one point, then the global strong (or classical) solution must blow up as time goes to infinity.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chatelon, F.J.; Orenga, P., Some smoothness and uniqueness results for a shallow-water problem, Adv. differential equations, 3, 1, 155-176, (1998) · Zbl 0953.35117
[2] Cho, Y.; Choe, H.J.; Kim, H., Unique solvability of the initial boundary value problems for compressible viscous fluids, J. math. pure appl. (9), 83, 2, 243-275, (2004) · Zbl 1080.35066
[3] Danchin, R., Global existence in critical spaces for compressible navier – stokes equations, Invent. math., 141, 579-614, (2000) · Zbl 0958.35100
[4] Feireisl, E.; Novotny, A.; Petzeltová, H., On the existence of globally defined weak solutions to the navier – stokes equations, J. math. fluid mech., 3, 4, 358-392, (2001) · Zbl 0997.35043
[5] Giga, Y.; Sohr, H., Abstract \(L^p\) estimates for the Cauchy problem with applications to the navier – stokes equations in exterior domains, J. funct. anal., 102, 1, 72-94, (1991) · Zbl 0739.35067
[6] Hieber, M.; Prüss, J., Heat kernels and maximal \(L^p\)-\(L^q\) estimates for parabolic evolution equations, Comm. partial differential equations, 22, 9-10, 1647-1669, (1997) · Zbl 0886.35030
[7] Hoff, D., Global existence for 1D, compressible, isentropic navier – stokes equations with large initial data, Trans. amer. math. soc., 303, 1, 169-181, (1987) · Zbl 0656.76064
[8] Hoff, D., Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. rational mech. anal., 132, 1-14, (1995) · Zbl 0836.76082
[9] Hoff, D.; Serre, D., The failure of continuous dependence on initial data for the navier – stokes equations of compressible flow, SIAM J. appl. math., 51, 4, 887-898, (1991) · Zbl 0741.35057
[10] Hoff, D.; Smoller, J., Non-formation of vacuum states for compressible navier – stokes equations, Comm. math. phys., 216, 2, 255-276, (2001) · Zbl 0988.76081
[11] Kazhikhov, A.V.; Shelukhin, V.V., Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. appl. math. mech., 41, 2, 273-282, (1977)
[12] Kazhikhov, A.V.; Weigant, V.A., Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers, Differential equations, 30, 6, 935-947, (1994) · Zbl 0835.35111
[13] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uraltseva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, RI, 1968.
[14] Lions, P.L., Existence globale de solutions pour LES equations de navier – stokes compressibles isentropiques, CR acad. sci. Paris, Sér. I math., 316, 1335-1340, (1993) · Zbl 0778.76086
[15] Lions, P.L., Limites incompressible et acoustique pour des fluides visqueux, compressibles et isentropiques, CR acad. sci. Paris Sér. I math., 317, 1197-1202, (1993) · Zbl 0795.76068
[16] P.L. Lions, Mathematical topics in fluid mechanics, vol. 2. Compressible models. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0908.76004
[17] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan acad. ser. A math. sci., 65, 9, 337-342, (1979) · Zbl 0447.76053
[18] Matsumura, A.; Nishida, T., The initial value problem for the equations of motion of viscous and heat-conductive gases, J. math. Kyoto univ., 20, 1, 67-104, (1980) · Zbl 0429.76040
[19] Matsumura, A.; Nishida, T., The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids, Comm. math. phys., 89, 445-464, (1983) · Zbl 0543.76099
[20] Min, L.; Kazhikhov, A.V.; Ukai, S., Global solutions to the Cauchy problem of the Stokes approximation equations for two-dimensional compressible flows, Comm. partial differential equations, 23, 5-6, 985-1006, (1998) · Zbl 0909.35107
[21] Salvi, R.; Straškraba, I., Global existence for viscous compressible fluids and their behavior as \(t \rightarrow \infty\), J. fac. sci. univ. Tokyo sect. IA math., 40, 17-51, (1993) · Zbl 0785.35074
[22] Serre, D., Solutions faibles globales des quations de navier – stokes pour un fluide compressible, CR acad. sci. Paris Sér. I math., 303, 13, 639-642, (1986) · Zbl 0597.76067
[23] Serre, D., On the one-dimensional equation of a viscous, compressible, heat-conducting fluid, CR acad. sci. Paris Sér. I math., 303, 14, 703-706, (1986) · Zbl 0611.35070
[24] Solonnikov, V.A., On solvability of an initial boundary value problem for the equations of motion of viscous compressible fluid, Zap. nauchn. sem. LOMI, 56, 128-142, (1976) · Zbl 0338.35078
[25] Valli, A.; Zajaczkowski, W.M., Navier – stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. math. phys., 103, 2, 259-296, (1986) · Zbl 0611.76082
[26] Xin, Z., Blowup of smooth solutions to the compressible navier – stokes equation with compact density, Comm. pure appl. math., 51, 3, 229-240, (1998) · Zbl 0937.35134
[27] Zlotnik, A.A., Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations, Differential equations, 36, 701-716, (2000) · Zbl 1088.35516
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.