×

Distributionally scrambled set for an annihilation operator. (English) Zbl 1330.81103


MSC:

81Q50 Quantum chaos
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] 1. Bayart, F. & Matheron, É. [2009] Dynamics of Linear Operators (Cambridge University Press, Cambridge). genRefLink(16, ’S0218127415501783BIB001’, ’10.1017 · Zbl 1187.47001
[2] 2. Bermúdez, T., Bonilla, A., Martínez-Giménez, F. & Peris, A. [2011] ” Li-Yorke and distributionally chaotic operators,” J. Math. Anal. Appl.373, 83-93. genRefLink(16, ’S0218127415501783BIB002’, ’10.1016 · Zbl 1214.47012
[3] 3. Bernardes, N. C., Bonilla, A., Müller, V. & Peris, A. [2013] ” Distributional chaos for linear operators,” J. Funct. Anal.265, 2143-2163. genRefLink(16, ’S0218127415501783BIB003’, ’10.1016 · Zbl 1302.47014
[4] 4. Bernardes, N. C., Bonilla, A., Müller, V. & Peris, A. [2015] ” Li-Yorke chaos in linear dynamics,” Ergod. Th. Dyn. Syst.35, 1723-1745. genRefLink(16, ’S0218127415501783BIB004’, ’10.1017 · Zbl 1352.37100
[5] 5. Bohm, A. [1994] Quantum Mechanics: Foundations and Applications, Texts and Monographs in Physics, 3rd edition (Springer, NY).
[6] 6. Duan, J., Fu, X., Liu, P. & Manning, A. [1999] ” A linear chaotic quantum harmonic oscillator,” Appl. Math. Lett.12, 15-19. genRefLink(16, ’S0218127415501783BIB006’, ’10.1016
[7] 7. Fu, X. & Duan, J. [1999] ” Infinite-dimensional linear dynamical systems with chaoticity,” J. Nonlin. Sci.9, 197-211. genRefLink(16, ’S0218127415501783BIB007’, ’10.1007
[8] 8. Grosse-Erdmann, K.-G. & Peris, A. [2011] Linear Chaos (Springer, Berlin). genRefLink(16, ’S0218127415501783BIB008’, ’10.1007 · Zbl 1246.47004
[9] 9. Gulisashvili, A. & MacCluer, C. R. [1996] ” Linear chaos in the unforced quantum harmonic oscillator,” J. Dyn. Syst. Meas. Contr.118, 337-338. genRefLink(16, ’S0218127415501783BIB009’, ’10.1115 · Zbl 0870.58057
[10] 10. Hou, B., Cui, P. & Cao, Y. [2010] ” Chaos for Cowen-Douglas operators,” Proc. Amer. Math. Soc.138, 929-936. genRefLink(16, ’S0218127415501783BIB010’, ’10.1090
[11] 11. Hou, B., Tian, G. & Zhu, S. [2012] ” Approximation of chaotic operators,” J. Operat. Th.67, 469-493. genRefLink(128, ’S0218127415501783BIB011’, ’000306247600010’); · Zbl 1261.47016
[12] 12. Li, T. & Yorke, J. [1975] ” Period three implies chaos,” Amer. Math. Monthly82, 985-992. genRefLink(16, ’S0218127415501783BIB012’, ’10.2307
[13] 13. Liboff, R. [1998] Introductory Quantum Mechanics, 3rd edition (Addison-Wesley, Reading, MA). · Zbl 0891.00009
[14] 14. Martínez-Giménez, F., Oprocha, P. & Peris, A. [2009] ” Distributional chaos for backward shifts,” J. Math. Anal. Appl.351, 607-615. genRefLink(16, ’S0218127415501783BIB014’, ’10.1016 · Zbl 1157.47008
[15] 15. Martínez-Giménez, F., Oprocha, P. & Peris, A. [2013] ” Distributional chaos for operators with full scrambled sets,” Math. Z.274, 603-612. genRefLink(16, ’S0218127415501783BIB015’, ’10.1007
[16] 16. Oprocha, P. [2006] ” A quantum harmonic oscillator and strong chaos,” J. Phys. A: Math. Gen.39, 14559-14565. genRefLink(16, ’S0218127415501783BIB016’, ’10.1088 · Zbl 1107.81026
[17] 17. Oprocha, P. [2009] ” Distributional chaos revisited,” Trans. Amer. Math. Soc.361, 4901-4925. genRefLink(16, ’S0218127415501783BIB017’, ’10.1090 · Zbl 1179.37017
[18] 18. Schweizer, B. & Smítal, J. [1994] ” Measures of chaos and a spectral decomposition of dynamical systems on the interval,” Trans. Amer. Math. Soc.344, 737-754. genRefLink(16, ’S0218127415501783BIB018’, ’10.2307 · Zbl 0812.58062
[19] 19. Singh, J. [1997] Quantum Mechanics: Fundamentals and Applications to Technology (Wiley, NY).
[20] 20. Wang, L., Huan, S. & Huang, G. [2008] ” A note on Schweizer-Smital chaos,” Nonlin. Anal.68, 1682-1686. genRefLink(16, ’S0218127415501783BIB020’, ’10.1016 · Zbl 1142.37309
[21] 21. Wu, X. & Zhu, P. [2011] ” The principal measure of a quantum harmonic oscillator,” J. Phys. A: Math. Theor.44, 505101. genRefLink(16, ’S0218127415501783BIB021’, ’10.1088
[22] 22. Wu, X. & Chen, G. [2013] ” On the invariance of maximal distributional chaos under an annihilation operator,” Appl. Math. Lett.26, 1134-1140. genRefLink(16, ’S0218127415501783BIB022’, ’10.1016 · Zbl 1370.37073
[23] 23. Wu, X. [2014] ” Invariant distributionally scrambled manifolds for an annihilation operator,” Abstr. Appl. Anal., ID 754960.
[24] 24. Wu, X., Chen, G. & Zhu, P. [2014] ” Invariance of chaos from backward shift on the Köthe sequence space,” Nonlinearity27, 271-288. genRefLink(16, ’S0218127415501783BIB024’, ’10.1088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.