×

zbMATH — the first resource for mathematics

Determining identifiable parameter combinations using subset profiling. (English) Zbl 1330.92009
Summary: Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A major component of identifiability analysis is determining the identifiable parameter combinations, the functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can help in model reparameterization and also in determining which parameters may be experimentally measured to recover model identifiability. Several numerical approaches to determining identifiability of differential equation models have been developed, however the question of determining identifiable combinations remains incompletely addressed. In this paper, we present a new approach which uses parameter subset selection methods based on the Fisher information matrix, together with the profile likelihood, to effectively estimate identifiable combinations. We demonstrate this approach on several example models in pharmacokinetics, cellular biology, and physiology.

MSC:
92B10 Taxonomy, cladistics, statistics in mathematical biology
Software:
DAISY; Python; SAAM II; SciPy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cobelli, C.; DiStefano, J. J., Parameter and structural identifiability concepts and ambiguities: a critical review and analysis, Am. J. Physiol. - Regul. Integr. Comp. Physiol., 239, 1, R7-R24, (1980)
[2] Landaw, E. M.; DiStefano, J. J., Multiexponential, multicompartmental, and noncompartmental modeling. II. data analysis and statistical considerations, Am. J. Physiol. - Regul. Integr. Comp. Physiol., 246, 5, R665-R677, (1984)
[3] Meshkat, N.; Eisenberg, M.; Distefano, J. J., An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Groebner bases, Math. Biosci., 222, 2, 61-72, (2009) · Zbl 1179.93066
[4] Sefkow, A. J.; DiStefano, J. J.; Himick, B. A.; Brown, S. B.; Eales, J. G., Kinetic analysis of thyroid hormone secretion and interconversion in the 5-day-fasted rainbow trout, oncorhynchus mykiss, Gen. Comp. Endocrinol., 101, 2, 123-138, (1996)
[5] Chappell, M. J.; Gunn, R. N., A procedure for generating locally identifiable reparameterisations of unidentifiable non-linear systems by the similarity transformation approach, Math. Biosci., 148, 1, 21-41, (1998) · Zbl 0910.93027
[6] Cole, D. J.; Morgan, B. J.T.; Titterington, D. M., Determining the parametric structure of models, Math. Biosci., 228, 1, 16-30, (2010) · Zbl 1202.62150
[7] Bellu, G.; Saccomani, M. P.; Audoly, S.; D’Angio, L., Daisy: a new software tool to test global identifiability of biological and physiological systems, Comput. Methods Prog. Biomed., 88, 1, 52-61, (2007)
[8] Pohjanpalo, H., System identifiability based on the power series expansion of the solution, Math. Biosci., 41, 1-2, 21-33, (1978) · Zbl 0393.92008
[9] Vajda, S.; Godfrey, H.; Rabitz, K. R., Similarity transformation approach to identifiability analysis of nonlinear compartmental models, Math. Biosci., 93, 2, 217-248, (1989) · Zbl 0696.92001
[10] Bellman, R.; Astrom, K. J., On structural identifiability, Math. Biosci., 7, 3-4, 329-339, (1970)
[11] Distefano, J. J., Complete parameter bounds and quasiidentifiability conditions for a class of unidentifiable linear systems, Math. Biosci., 65, 1, 51-68, (1983) · Zbl 0516.93016
[12] Ljung, L.; Glad, T., On global identifiability for arbitrary model parameterization, Automatica, 30, 2, 265-276, (1994) · Zbl 0795.93026
[13] Audoly, S.; Bellu, G.; D’Angio, L.; Saccomani, M. P.; Cobelli, C., Global identifiability of nonlinear models of biological systems, IEEE Trans. Biomed. Eng., 48, 1, 55-65, (2001)
[14] Saccomani, M. P.; Audoly, S.; D’Angiu, L., Parameter identifiability of nonlinear systems: the role of initial conditions, Automatica, 39, 4, 619-632, (2003) · Zbl 1034.93014
[15] Chis, O.-T.; Banga, J. R.; Balsa-Canto, E., Structural identifiability of systems biology models: a critical comparison of methods, PLoS ONE, 6, 11, e27755, (2011)
[16] Evans, N. D.; Chappell, M. J., Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems, Math. Biosci., 168, 2, 137-159, (2000) · Zbl 0989.93021
[17] Hengl, S.; Kreutz, C.; Timmer, J.; Maiwald, T., Data-based identifiability analysis of non-linear dynamical models, Bioinformatics, 23, 19, 2612-2618, (2007)
[18] Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmuller, U.; Timmer, J., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25, 15, 1923-1929, (2009)
[19] Eisenberg, M.; Samuels, M.; DiStefano, J. J., Extensions, validation, and clinical applications of a feedback control system simulator of the hypothalamo-pituitary-thyroid axis, Thyroid, 18, 10, 1071-1085, (2008)
[20] Eisenberg, M.; Robertson, S.; Tien, J., Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease, J. Theor. Biol., 324, 84-102, (2013) · Zbl 1314.92156
[21] Rothenberg, T. J., Identification in parametric models, Econometrica, 577, (1971) · Zbl 0231.62081
[22] Jacquez, J. A.; Greif, P., Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design, Math. Biosci., 77, 1-2, 201-227, (1985) · Zbl 0581.93017
[23] Jacquez, J. A.; Perry, T., Parameter estimation: local identifiability of parameters, Am. J. Physiol., 258, 4 Pt 1, E727-E736, (1990)
[24] Cintron-Arias, A.; Banks, H. T.; Capaldi, A.; Lloyd, A. L., A sensitivity matrix methodology for inverse problem formulation, J. Inverse Ill-Posed Probl., 17, 1-20, (2009) · Zbl 1179.34008
[25] Viviane Rodrigues Botelho, Luciane Ferreira Trierweiler, Jorge Otávio Trierweiler, A new approach for practical identifiability analysis applied to dynamic phenomenological models, in: 11th International Symposium on Process Systems Engineering, 2012.
[26] Komorowski, M.; Costa, M. J.; Rand, D. A.; Stumpf, M. P.H., Sensitivity, robustness, and identifiability in stochastic chemical kinetics models, Proc. Nat. Acad. Sci., 108, 21, 8645-8650, (2011)
[27] Raue, Andreas; Kreutz, Clemens; Theis, Fabian Joachim; Timmer, Jens, Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability, Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 371, 2013, (1984) · Zbl 1353.62013
[28] Balsa-Canto, Eva; Alonso, Antonio; Banga, Julio, An iterative identification procedure for dynamic modeling of biochemical networks, BMC Syst. Biol., 4, 1, 11, (2010)
[29] Viallefont, Anne; Lebreton, Jean-Dominique; Reboulet, Anne-Marie; Gory, Gerard, Parameter identifiability and model selection in capture-recapture models: a numerical approach, Biometrical J., 40, 3, 313-325, (1998) · Zbl 0906.62116
[30] Miao, H.; Xia, X.; Perelson, A.; Wu, H., On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 53, 1, 3-39, (2011) · Zbl 1215.34015
[31] Raue, A.; Karlsson, J.; Saccomani, M. P.; Jirstrand, M.; Timmer, J., Comparison of approaches for parameter identifiability analysis of biological systems, Bioinformatics, 1-9, (2014)
[32] M.P. Saccomani, Structural vs practical identifiability in system biology, in: WBBIO 2013 Proceedings, 2013, pp. 305-313.
[33] Dtsch, H. G.M.; Van Den Hof, P. M., Test for local structural identifiabilty of high-order non-linearly parameterized state space models, Automatica, 6, 32, 875-883., (1996) · Zbl 0919.93025
[34] J. Karlsson, M. Anguelova, M. Jirstrand, An efficient method for structural identifiability analysis of large dynamic systems, in: Proceedings of the 16th IFAC Symposium on System Identification, 2012, pp. 941-946.
[35] Holmberg, A., On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities, Math. Biosci., 62, 1, 23-43, (1982) · Zbl 0489.92021
[36] Murphy, S. A.; Van Der Vaart, A. W., On profile likelihood, J. Am. Stat. Assoc., 95, 450, 449-465, (2000) · Zbl 0995.62033
[37] Venzon, D. J.; Moolgavkar, S. H., A method for computing profile-likelihood-based confidence intervals, J. Roy. Stat. Soc. Ser. C (Appl. Stat.), 37, 1, 87-94, (1998)
[38] Oliphant, Travis E., Python for scientific computing, Comput. Sci. Eng., 9, 3, 10-20, (2007)
[39] Eric Jones, Travis Oliphant, Pearu Peterson, et al., SciPy: Open Source Scientific Tools for Python, 2001.
[40] Ward, Eric J., A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools, Ecol. Modell., 211, 1-10, (2008)
[41] Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 6767, 403, 335-338, (2000)
[42] Barrett, P. H.; Bell, B. M.; Cobelli, C.; Golde, H.; Schumitzky, A.; Vicini, P.; Foster, D. M., Saam II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies, Metabolism, 47, 4, 484-492, (1998)
[43] Meshkat, N.; Anderson, C.; DiStefano, J. J., Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations, Math. Biosci., 233, 1, 19-31, (2011) · Zbl 1226.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.