×

Do finite-size Lyapunov exponents detect coherent structures? (English) Zbl 1331.37023

Summary: Ridges of the Finite-Size Lyapunov Exponent (FSLE) field have been used as indicators of hyperbolic Lagrangian Coherent Structures (LCSs). A rigorous mathematical link between the FSLE and LCSs, however, has been missing. Here, we prove that an FSLE ridge satisfying certain conditions does signal a nearby ridge of some Finite-Time Lyapunov Exponent (FTLE) field, which in turn indicates a hyperbolic LCS under further conditions. Other FSLE ridges violating our conditions, however, are seen to be false positives for LCSs. We also find further limitations of the FSLE in Lagrangian coherence detection, including ill-posedness, artificial jump-discontinuities, and sensitivity with respect to the computational time step.{
©2013 American Institute of Physics}

MSC:

37B25 Stability of topological dynamical systems
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Artale, V.; Boffetta, G.; Celani, A.; Cencini, M.; Vulpiani, A., Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient, Phys. Fluids, 9, 3162-3171, (1997) · Zbl 1185.76736
[2] Aurell, E.; Boffetta, G.; Crisanti, A.; Paladin, G.; Vulpiani, A., Predictability in the large: an extension of the concept of Lyapunov exponent, J. Phys. A, 30, 1, (1997) · Zbl 0930.76037
[3] Bettencourt, J. H.; López, C.; Hernández García, E., Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent, J. Phys. A, 46, 254022, (2013) · Zbl 1351.37117
[4] Beron Vera, F. J.; Wang, Y.; Olascoaga, M. J.; Goni, G. J.; Haller, G., Objective detection of oceanic eddies and the Agulhas leakage, J. Phys. Oceanogr., 43, 1426-1438, (2013)
[5] Cencini, M.; Vulpiani, A., Finite size Lyapunov exponent: Review on applications, J. Phys. A, 46, 254019, (2013) · Zbl 1351.37119
[6] Damon, J., Properties of ridges and cores for two-dimensional images, J. Math. Imaging Vision, 10, 163-174, (1999) · Zbl 0941.68146
[7] d’Ovidio, F.; Fernández, V.; Hernández García, E.; López, C., Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 31, L17203, (2004)
[8] Eberly, D.; Gardner, R.; Morse, B.; Pizer, S.; Scharlach, C., Ridges for image analysis, J. Math. Imaging Vision, 4, 353-373, (1994)
[9] Farazmand, M.; Haller, G., Computing Lagrangian coherent structures from their variational theory, Chaos, 22, 013128, (2012) · Zbl 1331.37128
[10] Farazmand, M.; Haller, G., Erratum and addendum to “A variational theory of hyperbolic Lagrangian coherent structures [Physica D 240 (2011) 574-598]”, Physica D, 241, 439-441, (2012) · Zbl 1242.37059
[11] Farazmand, M.; Haller, G., Attracting and repelling Lagrangian coherent structures from a single computation, Chaos, 23, 023101, (2013) · Zbl 1331.37108
[12] Fenichel, N., Persistence and Smoothness of Invariant Manifolds for Flows, Indiana Univ. Math. J., 21, 193-226, (1971) · Zbl 0246.58015
[13] Haller, G., Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, 10, 99-108, (2000) · Zbl 0979.37012
[14] Haller, G., Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Physica D, 149, 248-277, (2001) · Zbl 1015.76077
[15] Haller, G., Lagrangian coherent structures from approximate velocity data, Phys. Fluids, 14, 1851-1861, (2002) · Zbl 1185.76161
[16] Haller, G., A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D, 240, 574-598, (2011) · Zbl 1214.37056
[17] Haller, G.; Beron Vera, F. J., Geodesic theory of transport barriers in two-dimensional flows, Physica D, 241, 1680-1702, (2012) · Zbl 1417.37109
[18] Haller, G.; Beron Vera, F. J., Coherent Lagrangian vortices: The black holes of turbulence, J. Fluid Mech., 731, R4, (2013) · Zbl 1294.76188
[19] Joseph, B.; Legras, B., Relation between kinematic boundaries, stirring, and barriers for the antarctic polar vortex, J. Atmos. Sci., 59, 1198-1212, (2002)
[20] Karrasch, D., Comment on “A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D 240 (2011) 574-598”, Physica D, 241, 1470-1473, (2012) · Zbl 1253.37079
[21] LaCasce, J., Statistics from Lagrangian observations, Prog. Oceanogr., 77, 1-29, (2008) · Zbl 1298.76169
[22] Lai, Y.-C.; Tél, T., Transient Chaos—Complex Dynamics on Finite Time Scales, 173, 496, (2011), Springer
[23] Lehahn, Y.; d’Ovidio, F.; Lévy, M.; Heifetz, E., Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data, J. Geophys. Res., 112, C08005, (2007)
[24] Mathur, M.; Haller, G.; Peacock, T.; Ruppert Felsot, J. E.; Swinney, H. L., Uncovering the Lagrangian Skeleton of Turbulence, Phys. Rev. Lett., 98, 144502, (2007)
[25] Norgard, G.; Bremer, P.-T., Ridge-Valley graphs: Combinatorial ridge detection using Jacobi sets, Comput. Aided Geom. Design, 30, 597-608, (2013) · Zbl 1285.68201
[26] Peacock, T.; Haller, G., Lagrangian coherent structures: The hidden skeleton of fluid flows, Phys. Today, 66, 2, 41-47, (2013)
[27] Peikert, R.; Pobitzer, A.; Sadlo, F.; Schindler, B.; Bremer, P.-T.; Hotz, I.; Pascucci, V.; Peikert, R., A comparison of finite-time and finite-size Lyapunov exponents, in Topological Methods in Data Analysis and Visualization III, (2014), Springer
[28] Schindler, B.; Peikert, R.; Fuchs, R.; Theisel, H.; Peikert, R.; Hauser, H.; Carr, H.; Fuchs, R., Ridge Concepts for the Visualization of Lagrangian Coherent Structures, in Topological Methods in Data Analysis and Visualization II, 221-236, (2012), Springer · Zbl 1426.76590
[29] Shadden, S. C.; Grigoriev, R., Lagrangian coherent structures, in Transport and Mixing in Laminar Flows, 59-89, (2011), Wiley · Zbl 1356.76334
[30] Shadden, S. C.; Lekien, F.; Marsden, J. E., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212, 271-304, (2005) · Zbl 1161.76487
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.