×

Möbius operators and non-additive quantum probabilities in the Birkhoff-von Neumann lattice. (English) Zbl 1331.60009

Summary: The properties of quantum probabilities are linked to the geometry of quantum mechanics, described by the Birkhoff-von Neumann lattice. Quantum probabilities violate the additivity property of Kolmogorov probabilities, and they are interpreted as Dempster-Shafer probabilities. Deviations from the additivity property are quantified with the Möbius (or non-additivity) operators which are defined through Möbius transforms, and which are shown to be intimately related to commutators. The lack of distributivity in the Birkhoff-von Neumann lattice \(\Lambda_d\), causes deviations from the law of the total probability (which is central in Kolmogorov’s probability theory). Projectors which quantify the lack of distributivity in \(\Lambda_d\), and also deviations from the law of the total probability, are introduced. All these operators, are observables and they can be measured experimentally. Constraints for the Möbius operators, which are based on the properties of the Birkhoff-von Neumann lattice (which in the case of finite quantum systems is a modular lattice), are derived. Application of this formalism in the context of coherent states, generalizes coherence to multi-dimensional structures.

MSC:

60A05 Axioms; other general questions in probability
06C05 Modular lattices, Desarguesian lattices
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Birkhoff, G.; von Neumann, J., Ann. of Math., 37, 823, (1936) · JFM 62.1061.04
[2] Piron, C., Foundations of quantum physics, (1976), Benjamin New York · Zbl 0333.46050
[3] Mackey, G. W., Mathematical foundations of quantum mechanics, (1963), Benjamin New York · Zbl 0114.44002
[4] Jauch, J., Foundations of quantum mechanics, (1968), Addison-Wesley Reading · Zbl 0166.23301
[5] Varadarajan, V. S., Geometry of quantum theory, (1968), Springer Berlin · Zbl 0155.56802
[6] Beltrametti, E.; Cassinelli, G., The logic of quantum mechanics, (1981), Addison-Wesley Reading · Zbl 0504.03026
[7] Engesser, K.; Gabbay, D. M.; Lehmann, D., Handbook of quantum logic and quantum structures, (2009), Elsevier Amsterdam · Zbl 1184.81003
[8] Gleason, A., J. Math. Mech., 6, 885, (1957)
[9] Lahti, P., Internat. J. Theoret. Phys., 19, 905, (1980)
[10] Lahti, P.; Maczynski, J., J. Math. Phys., 33, 4133, (1992)
[11] Caticha, A., Phys. Rev. A, 57, 1572, (1998)
[12] Schack, R.; Brun, T. A.; Caves, C. M., Phys. Rev. A, 64, (2001)
[13] Barrett, J., Phys. Rev. A, 75, (2007)
[14] Chiribella, G.; D’Ariano, G. M.; Perinotti, P., Phys. Rev. A, 81, (2010)
[15] Hardy, L.
[16] Ludwig, G., Comm. Math. Phys., 4, 331, (1967)
[17] Davies, E. B.; Lewis, J. T., Comm. Math. Phys., 17, 239, (1970)
[18] Gudder, S., Comm. Math. Phys., 29, 249, (1973)
[19] Mielnik, B., Comm. Math. Phys., 37, 221, (1974)
[20] Busch, P.; Grabowski, M.; Lahti, P. J., Operational quantum physics, (1995), Springer Berlin · Zbl 0863.60106
[21] Foulis, D. J.; Randall, C. H., J. Math. Phys., 13, 1667, (1972)
[22] Randall, C. H.; Foulis, D. J., J. Math. Phys., 14, 1472, (1973)
[23] Twareque Ali, S.; Emch, G. G., J. Math. Phys., 15, 176, (1974)
[24] Twareque Ali, S.; Doebner, H. D., J. Math. Phys., 17, 1105, (1976)
[25] S. Abramsky, B. Coecke, in: Proc. 19th Annual IEEE Symposium on Logic in Computer Science, 2004, p. 415.
[26] Coecke, B.; Ross, D., New J. Phys., 13, (2011)
[27] Vourdas, A., J. Math. Phys., 55, (2014)
[28] Vourdas, A., J. Phys. A, 47, (2014)
[29] Keynes, J. M., A treatise on probability, (1921), Macmilan London · Zbl 0121.34903
[30] Koopman, B. O., Ann. of Math., 41, 269, (1940) · Zbl 0024.05001
[31] Koopman, B. O., Bull. Amer. Math. Soc., 46, 763, (1940)
[32] Smith, C. A.B., J. R. Stat. Soc. B, 23, 1, (1961), (and discussion)
[33] Shafer, G., Arch. Hist. Exact Sci., 19, 309, (1978), (reprinted in [38])
[34] Dempster, A. P., Ann. Math. Stat., 38, 325, (1967)
[35] Dempster, A. P., Internat. J. Approx. Reason., 48, 365, (2008)
[36] Shafer, G., A mathematical theory of evidence, (1976), Princeton Univ. Press Princeton · Zbl 0359.62002
[37] Halpern, J. Y.; Fagin, R., Artificial Intelligence, 54, 275, (1992)
[38] (Yager, R.; Liu, L., Classic Works of the Dempster-Shafer Theory of Belief Functions, (2008), Springer Berlin) · Zbl 1135.68051
[39] Camerer, C.; Weber, M., J. Risk Uncertain., 5, 325, (1992)
[40] Dubois, D.; Prade, H., Ann. Math. Artif. Intell., 32, 35, (2001)
[41] Kyburg, H. E., Artificial Intelligence, 31, 271, (1987)
[42] Rota, G. C., Z. Wahrseheinlichkeitstheorie, 2, 340, (1964)
[43] Barnabei, M.; Brini, A.; Rota, G. C., Russian Math. Surveys, 41, 135, (1986)
[44] Vourdas, A., Rep. Progr. Phys., 67, 1, (2004)
[45] Vourdas, A., J. Phys. A, 40, R285, (2007)
[46] Birkhoff, G., Lattice theory, (1995), Amer. Math. Soc. Rhode Island · Zbl 0126.03801
[47] Szasz, G., Introduction to lattice theory, (1963), Academic London · Zbl 0126.03703
[48] Gratzer, G. A., General lattice theory, (2003), Springer Berlin
[49] Kalmbach, G., Orthomodular lattices, (1983), Academic London · Zbl 0512.06011
[50] Ptak, P.; Pulmannova, S., Orthomodular lattices as quantum logics, (1991), Kluwer Dordrecht
[51] Zhang, S.; Vourdas, A., J. Phys. A, 37, 8349, (2004)
[52] Cotfas, N.; Gazeau, J.-P.; Vourdas, A., J. Phys. A, 44, (2011)
[53] Golup, G. H.; van Loan, C. F., Matrix computations, (1989), John Hopkins Univ. Press Maryland
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.