×

zbMATH — the first resource for mathematics

Adaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields. (English) Zbl 1331.62066
Summary: Selecting between different dependency structures of hidden Markov random field can be very challenging, due to the intractable normalizing constant in the likelihood. We answer this question with approximate Bayesian computation (ABC) which provides a model choice method in the Bayesian paradigm. This comes after the work of A. Grelaud et al. [Bayesian Anal. 4, No. 2, 317–335 (2009; Zbl 1330.62126)] who exhibited sufficient statistics on directly observed Gibbs random fields. But when the random field is latent, the sufficiency falls and we complement the set with geometric summary statistics. The general approach to construct these intuitive statistics relies on a clustering analysis of the sites based on the observed colors and plausible latent graphs. The efficiency of ABC model choice based on these statistics is evaluated via a local error rate which may be of independent interest. As a byproduct we derived an ABC algorithm that adapts the dimension of the summary statistics to the dataset without distorting the model selection.

MSC:
62C10 Bayesian problems; characterization of Bayes procedures
62M05 Markov processes: estimation; hidden Markov models
62-07 Data analysis (statistics) (MSC2010)
62G05 Nonparametric estimation
62M40 Random fields; image analysis
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Alfò, M; Nieddu, L; Vicari, D, A finite mixture model for image segmentation, Stat. Comput., 18, 137-150, (2008)
[2] Baragatti, M; Pudlo, P, An overview on approximate Bayesian computation, ESAIM, 44, 291-299, (2014) · Zbl 1338.65022
[3] Beaumont, MA; Cornuet, J-M; Marin, J-M; Robert, CP, Adaptive approximate Bayesian computation, Biometrika, 96, 983-990, (2009) · Zbl 1437.62393
[4] Besag, J, Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Stat. Soc. Ser. B, 36, 192-236, (1974) · Zbl 0327.60067
[5] Besag, J, Statistical analysis of non-lattice data, Statistician, 24, 179-195, (1975)
[6] Biau, G., Cérou, F., Guyader, A.: New insights into Approximate Bayesian Computation. Annales de l’Institut Henri Poincaré (B) Probabilits et Statistiques, in press (2013)
[7] Blum, MGB; Nunes, MA; Prangle, D; Sisson, SA, A comparative review of dimension reduction methods in approximate Bayesian computation, Stat. Sci., 28, 189-208, (2013) · Zbl 1331.62123
[8] Caimo, A; Friel, N, Bayesian inference for exponential random graph models, Soc. Netw., 33, 41-55, (2011)
[9] Caimo, A; Friel, N, Bayesian model selection for exponential random graph models, Soc. Netw., 35, 11-24, (2013)
[10] Cucala, L; Marin, J-M, Bayesian inference on a mixture model with spatial dependence, J. Comput. Gr. Stat., 22, 584-597, (2013)
[11] Moral, P; Doucet, A; Jasra, A, An adaptive sequential Monte Carlo method for approximate Bayesian computation, Stat. Comput., 22, 1009-1020, (2012) · Zbl 1252.65025
[12] Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, Volume 31 of Applications of Mathematics (New York). Springer, New York (1996) · Zbl 0853.68150
[13] Didelot, X; Everitt, RG; Johansen, AM; Lawson, DJ, Likelihood-free estimation of model evidence, Bayesian Anal., 6, 49-76, (2011) · Zbl 1330.62118
[14] Druilhet, P; Marin, J-M, Invariant HPD credible sets and MAP estimators, Bayesian Anal., 2, 681-691, (2007) · Zbl 1331.62136
[15] Estoup, A; Lombaert, E; Marin, J-M; Robert, C; Guillemaud, T; Pudlo, P; Cornuet, J-M, Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics, Mol. Ecol. Ressour., 12, 846-855, (2012)
[16] Everitt, R.G.: Bayesian parameter estimation for latent Markov random fields and social networks. J. Comput. Gr. Stat. 21(4), 940-960 (2012)
[17] Forbes, F; Peyrard, N, Hidden Markov random field model selection criteria based on Mean field-like approximations, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1089-1101, (2003)
[18] François, O; Ancelet, S; Guillot, G, Bayesian clustering using hidden Markov random fields in spatial population genetics, Genetics, 174, 805-816, (2006)
[19] Friel, N, Evidence and Bayes factor estimation for Gibbs random fields, J. Comput. Gr. Stat., 22, 518-532, (2013)
[20] Friel, N.: Bayesian inference for Gibbs random fields using composite likelihoods. In Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1-8 (2012) · Zbl 1437.62393
[21] Friel, N; Rue, H, Recursive computing and simulation-free inference for general factorizable models, Biometrika, 94, 661-672, (2007) · Zbl 1135.62078
[22] Friel, N; Pettitt, AN; Reeves, R; Wit, E, Bayesian inference in hidden Markov random fields for binary data defined on large lattices, J. Comput. Gr. Stat., 18, 243-261, (2009)
[23] Green, PJ; Richardson, S, Hidden Markov models and disease mapping, J. Am. Stat. Assoc., 97, 1055-1070, (2002) · Zbl 1046.62117
[24] Grelaud, A; Robert, CP; Marin, J-M; Rodolphe, F; Taly, J-F, ABC likelihood-free methods for model choice in Gibbs random fields, Bayesian Anal., 4, 317-336, (2009) · Zbl 1330.62126
[25] Hurn, M.A., Husby, O.K., Rue, H.: A Tutorial on Image Analysis. In Spatial Statistics and Computational Methods, volume 173 of Lecture Notes in Statistics pages 87-141. Springer, New York, ISBN 978-0-387-00136-4 (2003) · Zbl 1255.62185
[26] Marin, J-M; Pudlo, P; Robert, CP; Ryder, RJ, Approximate Bayesian computational methods, Stat. Comput., 22, 1167-1180, (2012) · Zbl 1252.62022
[27] Marin, J-M; Pillai, NS; Robert, CP; Rousseau, J, Relevant statistics for Bayesian model choice, J. R. Stat. Soc., 73, 173, (2013)
[28] Marjoram, P; Molitor, J; Plagnol, V; Tavaré, S, Markov chain Monte Carlo without likelihoods, Proc. Natl. Acad. Sci., 100, 15324-15328, (2003)
[29] Mira, A; Møller, J; Roberts, GO, Perfect slice samplers, J. R. Stat. Soc., 63, 593-606, (2001) · Zbl 0993.65015
[30] Moores, MT; Hargrave, CE; Harden, F; Mengersen, K, Segmentation of cone-beam CT using a hidden Markov random field with informative priors, J. Phys., 489, 012076, (2014)
[31] Moores, M.T., Mengersen, K., Robert, C.P.: Pre-processing for approximate Bayesian computation in image analysis. ArXiv e-prints March (2014) · Zbl 1331.62158
[32] Prangle, D; Fearnhead, P; Cox, MP; Biggs, PJ; French, NP, Semi-automatic selection of summary statistics for ABC model choice, Stat. Appl. Genet. Mol. Biol., 7, 1-16, (2013)
[33] Pritchard, JK; Seielstad, MT; Perez-Lezaun, A; Feldman, MW, Population growth of human Y chromosomes: a study of Y chromosome microsatellites, Mol. Biol. Evol., 16, 1791-1798, (1999)
[34] Reeves, R; Pettitt, AN, Efficient recursions for general factorisable models, Biometrika, 91, 751-757, (2004) · Zbl 1162.62310
[35] Robert, CP; Cornuet, J-M; Marin, J-M; Pillai, NS, Lack of confidence in approximate Bayesian computation model choice, Proc. Natl. Acad. Sci., 108, 15112-15117, (2011)
[36] Swendsen, RH; Wang, J-S, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58, 86-88, (1987)
[37] Tavaré, S; Balding, DJ; Griffiths, RC; Donnelly, P, Inferring coalescence times from DNA sequence data, Genetics, 145, 505-518, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.