×

Solutions for the Klein-Gordon and Dirac equations on the lattice based on Chebyshev polynomials. (English) Zbl 1332.30077

Summary: The main goal of this paper is to adopt a multivector calculus scheme to study finite difference discretizations of Klein-Gordon and Dirac equations for which Chebyshev polynomials of the first kind may be used to represent a set of solutions. The development of a well-adapted discrete Clifford calculus framework based on spinor fields allows us to represent, using solely projection based arguments, the solutions for the discretized Dirac equations from the knowledge of the solutions of the discretized Klein-Gordon equation. Implications of those findings on the interpretation of the lattice fermion doubling problem is briefly discussed.

MSC:

30G35 Functions of hypercomplex variables and generalized variables
39A12 Discrete version of topics in analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Becher, P., Joos, H.: The Dirac-Kähler equation and fermions on the lattice. Z. Phys. C 15, 343-365 (1982) · doi:10.1007/BF01614426
[2] Bohm, D.: Space, time, and the quantum theory understood in terms of discrete structural process. In: Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252-287 (1965)
[3] Borici, A.: Creutz fermions on an orthogonal lattice. Phys. Rev. D 78(7), 074504 (2008) · doi:10.1103/PhysRevD.78.074504
[4] Borštnik, N.M., Nielsen, H.B.: Dirac-Kähler approach connected to quantum mechanics in Grassmann space. Phys. Rev. D 62(4), 044010 (2000) · doi:10.1103/PhysRevD.62.044010
[5] Cerejeiras, P., Kähler, U., Ku, M., Sommen, F.: Discrete Hardy Spaces. J. Fourier Anal. Appl. 20(4), 715-750 (2014) · Zbl 1308.44002 · doi:10.1007/s00041-014-9331-8
[6] Chan, Y.-S., Fannjiang, A.C., Paulino, G.H.: Integral equations with hypersingular kernels-theory and applications to fracture mechanics. Int. J. Eng. Sci. 41(7), 683-720 (2003) · Zbl 1211.74184 · doi:10.1016/S0020-7225(02)00134-9
[7] Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515-580 (2012) · Zbl 1257.82020 · doi:10.1007/s00222-011-0371-2
[8] Cole, E.A.B.: Transition from a continuous to a discrete space-time scheme. Il Nuovo Cimento A 66(4), 645-656 (1970) · Zbl 0191.26702 · doi:10.1007/BF02824710
[9] Constales, D., Faustino, N., Kraußhar, R.S.: Fock spaces. Landau operators and the time-harmonic Maxwell equations. J. Phys. A Math. Theor. 44(13), 135303 (2011) · Zbl 1213.81218 · doi:10.1088/1751-8113/44/13/135303
[10] Creutz, M.: Local chiral fermions, The XXVI International Symposium on Lattice Field Theory (2008). arXiv:0808.0014 · Zbl 1221.30107
[11] da Rocha, R., Vaz Jr., J.: Extended Grassmann and Clifford algebras. Adv. Appl. Clifford Algebr. 16(2), 103-125 (2006) · Zbl 1116.15026 · doi:10.1007/s00006-006-0006-7
[12] da Veiga, P.A.F., O’Carroll, M., Schor, R.: Excitation spectrum and staggering transformations in lattice quantum models. Phys. Rev. E 66(2), 027108 (2002) · doi:10.1103/PhysRevE.66.027108
[13] Dimakis, A., Müller-Hoissen, F.: Discrete differential calculus: graphs, topologies, and gauge theory. J. Math. Phys. 35(12), 6703-6735 (1994) · Zbl 0822.58004 · doi:10.1063/1.530638
[14] Faustino, N., Kähler, U., Sommen, F.: Discrete Dirac operators in Clifford analysis. Adv. Appl. Clifford Algebr. 17(3), 451-467 (2007) · Zbl 1208.30046 · doi:10.1007/s00006-007-0041-z
[15] Faustino, N.: Discrete Clifford analysis, Dissertation. Ria Repositório Institucional, Universidade de Aveiro (2009). http://hdl.handle.net/10773/2942
[16] Faustino, N.: Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle. Appl. Math. Comput. 247, 607-622 (2014) · Zbl 1338.05016 · doi:10.1016/j.amc.2014.09.027
[17] Friedan, D.: A proof of the Nielsen-Ninomiya theorem. Commun. Math. Phys 85(4), 481-490 (1982) · doi:10.1007/BF01403500
[18] Froyen, S.: Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations. Phys. Rev. B 39(5), 3168-3172 (1989) · doi:10.1103/PhysRevB.39.3168
[19] Gürlebeck, K., Hommel, A.: On finite difference Dirac operators and their fundamental solutions. Adv. Appl. Clifford Algebr. 11(2), 89-106 (2001) · Zbl 1221.30107 · doi:10.1007/BF03219125
[20] Kanamori, I., Kawamoto, N.: Dirac-Kaehler fermion from Clifford product with noncommutative differential form on a lattice. Int. J. Mod. Phys. A 19(05), 695-736 (2004) · Zbl 1080.81535 · doi:10.1142/S0217751X04017628
[21] Kogut, J., Susskind, L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11(2), 395-408 (1975) · doi:10.1103/PhysRevD.11.395
[22] Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177-216 (2001) · Zbl 1043.82005 · doi:10.1007/s002200000348
[23] Monaco, R.L., de Oliveira, E.C.: A new approach for the Jeffreys-Wentzel-Kramers-Brillouin theory. J. Math. Phys. 35(12), 6371-6378 (1994) · Zbl 0824.39002 · doi:10.1063/1.530680
[24] Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge (1994) · doi:10.1017/CBO9780511470783
[25] Nielsen, H.B., Ninomiya, M.: A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105(2), 219-223 (1981) · doi:10.1016/0370-2693(81)91026-1
[26] Rabin, J.: Homology theory of lattice fermion doubling. Nucl. Phys. B 201(2), 315-332 (1982) · doi:10.1016/0550-3213(82)90434-5
[27] Rodrigues Jr., W.A., de Oliveira, E.C.: The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, vol. 722. Springer, Heidelberg (2007) · doi:10.1007/978-3-540-71293-0
[28] Vaz Jr., J.: Clifford-like calculus over lattices. Adv. Appl. Clifford Algebr. 7(1), 37-70 (1997) · Zbl 0886.15036 · doi:10.1007/BF03041215
[29] Vaz Jr., J.: Clifford algebras and Witten’s monopole equations In: Apanasov, B., Rodrigues, U. (eds). Geometry, topology and physics: interfaces in computer science and operations research, 2nd edn, vol 2, pp. 277-300. Walter de Gruyter & Co., Berlin (1997) · Zbl 0955.58029
[30] Wilson, W.K.: Confinement of quarks. Phys. Rev. D 10(8), 2445-2459 (1974) · doi:10.1103/PhysRevD.10.2445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.