zbMATH — the first resource for mathematics

A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering. (English) Zbl 1332.62204
Summary: We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and \(t\) tails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering examples.

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62H05 Characterization and structure theory for multivariate probability distributions; copulas
60E05 Probability distributions: general theory
PDF BibTeX Cite
Full Text: DOI
[1] Andrews, J.L.; McNicholas, P.D., Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions, Stat. Comput., 22, 1021-1029, (2012) · Zbl 1252.62062
[2] Archambeau, C.; Verleysen, M., Robust Bayesian clustering, Neural Netw., 20, 129-138, (2007) · Zbl 1158.68440
[3] Arnaud, E.; Christensen, H.; Lu, Y.-C.; Barker, J.; Khalidov, V.; Hansard, M.; Holveck, B.; Mathieu, H.; Narasimha, R.; Taillant, E.; Forbes, F.; Horaud, R., The CAVA corpus: synchronised stereoscopic and binaural datasets with head movements, Chania, Crete, Greece
[4] Azzalini, A.; Genton, M.G., Robust likelihood methods based on the skew-t and related distributions, Int. Stat. Rev., 76, 106-129, (2008) · Zbl 1206.62102
[5] Barndorff-Nielsen, O.; Kent, J.; Sorensen, M., Normal variance-Mean mixtures and z distributions, Int. Stat. Rev., 50, 145-159, (1982) · Zbl 0497.62019
[6] Bishop, C.M.; Svensen, M., Robust Bayesian mixture modelling, Neurocomputing, 64, 235-252, (2005)
[7] Bouveyron, C.; Girard, S.; Schmid, C., High dimensional data clustering, Comput. Stat. Data Anal., 52, 502-519, (2007) · Zbl 1452.62433
[8] Browne, R.; McNicholas, P., Orthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture models, (2012) · Zbl 1325.62008
[9] Celeux, G.; Govaert, G., Gaussian parsimonious clustering models, Pattern Recognit., 28, 781-793, (1995)
[10] Cuesta-Albertos, J.A.; Gordaliza, A.; Matran, C., Trimmed k-means: an attempt to robustify quantizers, Ann. Stat., 25, 553-576, (1997) · Zbl 0878.62045
[11] Cuesta-Albertos, J.A.; Matrán, C.; Mayo-Iscar, A., Robust estimation in the normal mixture model based on robust clustering, J. R. Stat. Soc., Ser. B, Stat. Methodol., 70, 779-802, (2008) · Zbl 05563369
[12] Daul, S.; DeGiorgi, E.; Lindskog, F.; McNeil, A.J., The grouped t-copula with an application to credit risk, Risk, 16, 73-76, (2003)
[13] Demarta, S.; McNeil, A.J., The t copula and related copulas, Int. Stat. Rev., 73, 111-129, (2005) · Zbl 1104.62060
[14] Eltoft, T.; Kim, T.; Lee, T.-W.; Rosca, J. (ed.); Erdogmus, D. (ed.); Principe, J. (ed.); Haykin, S. (ed.), Multivariate scale mixture of gaussians modeling, No. 3889, 799-806, (2006), Berlin/Heidelberg · Zbl 1178.94067
[15] Fang, H.-B.; Fang, K.-T.; Kotz, S., The meta-elliptical distributions with given marginals, J. Multivar. Anal., 82, 1-16, (2002) · Zbl 1002.62016
[16] Finegold, M.; Drton, M., Robust graphical modeling of gene networks using classical and alternative t-distributions, Ann. Appl. Stat., 5, 1057-1080, (2011) · Zbl 1232.62083
[17] Flury, B.N., Common principal components in K groups, J. Am. Stat. Assoc., 79, 892-898, (1984)
[18] Flury, B.N.; Gautschi, W., An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form, SIAM J. Sci. Stat. Comput., 7, 169-184, (1986) · Zbl 0614.65043
[19] Forbes, F.; Doyle, S.; Garcia-Lorenzo, D.; Barillot, C.; Dojat, M., A weighted multi-sequence Markov model for brain lesion segmentation, 13-15, (2010), Italy
[20] Fraley, C.; Raftery, A.E., Model-based clustering, discriminant analysis, and density estimation, J. Am. Stat. Assoc., 97, 611-631, (2002) · Zbl 1073.62545
[21] Giordani, R.; Mun, X.; Tran, M.-N.; Kohn, R., Flexible multivariate density estimation with marginal adaptation, J. Comput. Graph. Stat., (2012)
[22] Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2, 2nd edn. Wiley, New York (1994) · Zbl 0811.62001
[23] Jones, M.C., A dependent bivariate t distribution with marginals on different degrees of freedom, Stat. Probab. Lett., 56, 163-170, (2002) · Zbl 0994.62050
[24] Karlis, D.; Santourian, A., Model-based clustering with non-elliptically contoured distributions, Stat. Comput., 19, 73-83, (2009)
[25] Khalidov, V.: Conjugate mixture models for the modelling of visual and auditory perception. PhD thesis, Grenoble University (October 2010) · Zbl 0878.62045
[26] Khalidov, V.; Forbes, F.; Horaud, R., Conjugate mixture models for clustering multimodal data, Neural Comput., 23, 517-557, (2011) · Zbl 1214.62072
[27] Kotz, S., Nadarajah, S.: Multivariate t Distributions and their Applications. Cambridge (2004) · Zbl 1100.62059
[28] McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000a) · Zbl 0963.62061
[29] McLachlan, G.J.; Peel, D., Robust mixture modelling using the t distribution, Stat. Comput., 10, 339-348, (2000)
[30] Nadarajah, S.; Dey, D.K., Multitude of multivariate t distributions, J. Theor. Appl. Stat., 39, 149-181, (2005) · Zbl 1067.62059
[31] Nadarajah, S.; Kotz, S., Multitude of bivariate t distributions, J. Theor. Appl. Stat., 38, 527-539, (2004) · Zbl 1055.62062
[32] Shaw, W.T.; Lee, K.T.A., Bivariate student distributions with variable marginal degrees of freedom and independence, J. Multivar. Anal., 99, 1276-1287, (2008) · Zbl 1216.62081
[33] Shephard, N., From characteristic function to distribution function: a simple framework for the theory, Econom. Theory, 7, 519-529, (1991)
[34] Shoham, S., Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions, Pattern Recognit., 35, 1127-1142, (2002) · Zbl 1005.68051
[35] Witkovský, V., On the exact computation of the density and of the quantiles of linear combinations of t and F random variables, J. Stat. Plan. Inference, 94, 1-13, (2001) · Zbl 0971.62012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.