×

Stabilization of hyperbolic equations with mixed boundary conditions. (English) Zbl 1332.93052

Summary: This paper is devoted to study decay properties of solutions to hyperbolic equations in a bounded domain with two types of dissipative mechanisms, i.e. either with a small boundary or an internal damping. Both of the equations are equipped with the mixed boundary conditions. When the Geometric Control Condition on the dissipative region is not satisfied, we show that sufficiently smooth solutions to the equations decay logarithmically, under sharp regularity assumptions on the coefficients, the damping and the boundary of the domain involved in the equations. Our decay results rely on an analysis of the size of resolvent operators for hyperbolic equations on the imaginary axis. To derive this kind of resolvent estimates, we employ global Carleman estimates for elliptic equations with mixed boundary conditions.

MSC:

93B05 Controllability
93B07 Observability
35Q93 PDEs in connection with control and optimization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Ammari, Dirichlet boundary stabilization of the wave equation,, Asymptot. Anal., 30, 117 (2002) · Zbl 1020.35042
[2] C. Bardos, Sharp sufficient conditions for the observation, control and stabilization from the boundary,, SIAM J. Control Optim., 30, 1024 (1992) · Zbl 0786.93009 · doi:10.1137/0330055
[3] C. J. K. Batty, Non-uniform stability for bounded semi-groups on Banach spaces,, J. Evol. Equ., 8, 765 (2008) · Zbl 1185.47043 · doi:10.1007/s00028-008-0424-1
[4] M. Bellassoued, Decay of solutions of the elastic wave equation with a localized dissipation,, Ann. Fac. Sci. Toulouse Math. (6), 12, 267 (2003) · Zbl 1073.35036 · doi:10.5802/afst.1049
[5] A. Borichev, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347, 455 (2010) · Zbl 1185.47044 · doi:10.1007/s00208-009-0439-0
[6] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel,, (French) [Decay of the local energy of the wave equation for the exterior problem and absence of resonance near the real axis], 180, 1 (1998) · Zbl 0918.35081 · doi:10.1007/BF02392877
[7] N. Burq, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14, 35 (2007) · Zbl 1122.35015 · doi:10.4310/MRL.2007.v14.n1.a3
[8] H. Christianson, From resolvent estimates to damped waves,, J. Anal. Math., 122, 14 (2014) · Zbl 1301.35191 · doi:10.1007/s11854-014-0006-9
[9] P. Cornilleau, Carleman estimates for the Zaremba boundary condition and stabilization of waves,, Amer. J. Math., 136, 393 (2014) · Zbl 1302.35230 · doi:10.1353/ajm.2014.0014
[10] X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping,, in Some Problems on Nonlinear Hyperbolic Equations and Applications, 310 (2010) · Zbl 1180.35104 · doi:10.1080/03605300903116389
[11] X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping,, Z. angew. Math. Phys., 62, 667 (2011) · Zbl 1264.35041 · doi:10.1007/s00033-010-0113-0
[12] A. Haraux, <em>Systèmes Dynamiques Dissipatifs et Applications</em>,, (French) [Dissipative Dynamical Systems and Applications] (1991) · Zbl 0726.58001
[13] F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces,, Ann. Differential Equations, 1, 43 (1985)
[14] O. Yu. Imanuvilov, Lipschitz stability in inverse parabolic problems by the Carleman estimate,, Inverse Problems, 14, 1229 (1998) · Zbl 0992.35110 · doi:10.1088/0266-5611/14/5/009
[15] V. Komornik, A direct method for the boundary stabilization of the wave equation,, J. Math. Pures Appl., 69, 33 (1990) · Zbl 0636.93064
[16] G. Lebeau, Equation des ondes amorties,, (French) [Damped wave equation], 73 (1993) · Zbl 0863.58068
[17] G. Lebeau, Stabilisation de l’équation des ondes par le bord,, (French) [Stabilization of the wave equations by the boundary], 86, 465 (1997) · Zbl 0884.58093 · doi:10.1215/S0012-7094-97-08614-2
[18] Z. Liu, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. angew. Math. Phys., 56, 630 (2005) · Zbl 1100.47036 · doi:10.1007/s00033-004-3073-4
[19] Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators,, ESAIM Control Optim. Calc. Var., 19, 255 (2013) · Zbl 1258.93035 · doi:10.1051/cocv/2012008
[20] K.-D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Differential Equations, 240, 92 (2007) · Zbl 1130.35017 · doi:10.1016/j.jde.2007.05.016
[21] K.-D. Phung, Time reversal focusing of the initial state for Kirchoff plate,, SIAM J. Appl. Math., 68, 1535 (2008) · Zbl 1156.35103 · doi:10.1137/070684823
[22] J. Prüss, On the spectrum of \(C_0\)-semigroups,, Trans. Amer. Math. Soc., 284, 847 (1984) · Zbl 0572.47030 · doi:10.2307/1999112
[23] T. Qin, The global smooth solutions of second order quasilinear hyperbolic equations with dissipative boundary conditions,, Chinese Ann. Math. Ser. B, 9, 251 (1988) · Zbl 0664.35059
[24] J. Rauch, Decay of solutions to nondissipative hyperbolic systems on compact manifolds,, Comm. Pure Appl. Math., 28, 501 (1975) · Zbl 0295.35048 · doi:10.1002/cpa.3160280405
[25] M. Reed, <em>Methods of Modern Mathematics Physics II: Fourier Analysis, Self-Adjointness</em>,, Academic Press (1975) · Zbl 0308.47002
[26] X. Zhang, A unified controllability/observability theory for some stochastic and deterministic partial differential equations,, in Proc. Internat. Congress of Mathematicians, 3008 (1971) · Zbl 1198.60005 · doi:10.1007/978-0-387-89488-1
[27] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial Differential Equations, 15, 205 (1990) · Zbl 0716.35010 · doi:10.1080/03605309908820684
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.