×

Computations with finite element methods for the Brinkman problem. (English) Zbl 1333.76051

Summary: Various finite element families for the Brinkman flow (or Stokes-Darcy flow) are tested numerically. Particularly, the effect of small permeability is studied. The tested finite elements are the MINI element, the Taylor-Hood element, and the stabilized equal order methods. The numerical tests include both a priori analysis and adaptive methods.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Allaire, G.: Homogenization of the navier-stokes equations in open sets perforated with tiny holes. I. abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209–259 (1990) · Zbl 0724.76020
[2] Allaire, G.: Homogenization of the navier-stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113(3), 261–298 (1990) · Zbl 0724.76021
[3] Arbogast, T., Lehr, H.L.: Homogenization of a darcy-stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006) · Zbl 1197.76122
[4] Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984). (1985) · Zbl 0593.76039
[5] Badia, S., Codina, R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47(3), 1971–2000 (2009) · Zbl 1406.76047
[6] Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the stokes problem in the primitive variables. Numer. Math. 33(2), 211–224 (1979) · Zbl 0423.65058
[7] Boffi, D.: Stability of higher order triangular Hood-Taylor methods for the stationary stokes equations. Math. Models Methods Appl. Sci. 4(2), 223–235 (1994) · Zbl 0804.76051
[8] Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664–670 (1997) · Zbl 0874.76032
[9] Brezzi, F., Falk, R.S.: Stability of higher-order hood-taylor methods. SIAM J. Numer. Anal. 28(3), 581–590 (1991) · Zbl 0731.76042
[10] Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solutions of Elliptic Systems (Kiel, 1984). Notes Numer. Fluid Mech., vol. 10, pp. 11–19. Vieweg, Braunschweig (1984)
[11] Falk, R.S.: A fortin operator for two-dimensional taylor-hood elements. M2AN Math. Model. Numer. Anal. 42(3), 411–424 (2008) · Zbl 1143.65085
[12] Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized finite element methods. In: Gunzburger, M., Nicolaides, R.A. (eds.) Incompressible Computational Fluid Dynamics, chapter 4, pp. 87–107. Cambridge University Press (1993) · Zbl 1189.76339
[13] Franca, L.P., Stenberg, R.: Error analysis of galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991) · Zbl 0759.73055
[14] Hansbo, P., Juntunen, M.: Weakly imposed Dirichlet boundary conditions for the brinkman model of porous media flow. Appl. Numer. Math. 59, 1274–1289 (2009) · Zbl 1162.76056
[15] Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics. VII. The stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987) · Zbl 0635.76067
[16] Juntunen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo, (2009). doi: 10.1007/s10092-009-0017-6 · Zbl 1163.65075
[17] Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comp. 78(267), 1353–1374 (2009) · Zbl 1198.65223
[18] Juntunen, M., Stenberg, R.: A residual based a posteriori estimator for the reaction-diffusion problem. C. R. Acad. Sci. Paris, Ser. I 347, 555–558 (2009) · Zbl 1163.65075
[19] Lévy, T.: Loi de Darcy ou loi de Brinkman? C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292(12), 871–874, Erratum (17):1239 (1981)
[20] Mardal, K., Tai, X., Winther, R.: A robust finite element method for darcy-stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002) · Zbl 1037.65120
[21] Mardal,K., Winther, R.: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327 (2004) · Zbl 1058.65101
[22] Mardal, K., Winther, R.: Uniform preconditioners for the time dependent stokes problem. Numer. Math. 103, 171–172 (2006) · Zbl 1094.65045
[23] Nitsche, J.A.: Über ein variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1970/71) · Zbl 0229.65079
[24] Rajagopal, K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(2), 215–252 (2007) · Zbl 1123.76066
[25] Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19(1), 111–143 (1985) · Zbl 0608.65013
[26] Stenberg, R.: On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Eng. 63(3), 261–269 (1987) · Zbl 0684.73036
[27] Stenberg, R.: Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54, 495–508 (1990) · Zbl 0702.65095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.